Biotechnology Engineering(Ph.D.)

1.	The release of Ca ²⁺ from endoplasmic reticulum to cytoplasm in response to stimulus is mediated by					
	A) cAMP C) DAG		B) IP3 D)calmodulin			
2.	Which one of the	following 0.1M solution	on has the lowest pH			
	A) NaNO ₂	B) NH ₄ Cl	C) NaCl	D) NH ₃		
3.	Shine-Delgarno se	equence is a part of				
	A) Eukaryotic mR C) Catenated tRN		B) Prokaryotic mR D) Eukaryotic rRN			
4.	Cori cycle integra	tes body metabolism to)			
	B) Oxidize acetyl C) Generate urea	clucose from lactate in a CoA in the muscle in the kidney ose from acetyl CoA in				
5.	Blood group antig	gens are				
	A) Species specificC) Autospecific	С	B) IsospecificD) Organ specific			
6.	if 1 mL of a solution of 0.01 M HCl is diluted to 100 mL at 25°C, the pH of the resulting solution will be					
	A) 2	B) 6	C) 4	D) 3		
7.	Chromosome constitution in case of Turner's syndrome is					
	A) XXY	B) XYY	C) XO	D)XXX		
8.	A person with inc. A) Tetanus	reased interferon levels B) Malaria	s in his serum is likely t C) Typhoid	o be suffering from D) Measles		
9.	For glycolipoproteins, most commonly used probe					
	A) Interferons	B) Lectins	C) Antigens	D) Antibody		
10.	Bt toxin, produced by <i>Bacillus thuringiensis</i> , does NOT kill the bacteria itself because the toxin is					
	B) In an inactive f C) Active only ag	pecial intracellular sac Form inside the bacteria ainst eukaryotic riboso ery small quantities				
11.	An enzyme shows highest activity in the pH range 2.0 - 3.0. At pH 4.0 and pH 7.0, the enzyme exhibits 50% and 1%, respectively, of its highest activity. Which of the following states of anamino acid residue in the catalytic site is most responsible for its activity profile?					
	A) A protonated A C) A deprotonated	-	B) A deprotonated D) A protonated A	-		

12.	The agglutinin test	is used for		
	,	of isolated bacteria enic structure of bacteria		g of bacterial species these
13.	Cephalin, a biolog	cal surfactant, is		
	A) CholinephosphB) Ethanolamine pC) GlycosphingoliD) Sphingolipid	hosphoglyceride		
14.	start of sterilization	n (t=0), respectively. A	ssuming that	during sterilization and at the cell death follows first order f the following relationship(s)
	A) $N = N_0 e^{kt}$ C) $N = N_0 kt^2$		B) -ln (N/N D) N - N ₀	
15.	4.0) at 4°C until th	eir internal pH is equal t	o 4.0. Then,	oplasts are kept in buffer (pH they are transferred to a buffer e. Which of the following will
	C) Chloroplasts wi	Ill be destroyed the chloroplast will relea Il be intact but no ATP v Ill be intact and ATP wil	vill be produ	ced
16.	Two mammalian cell lines with doubling times of 12 h and 36 h were cultured with radioactive thymidine for 8 h. The cells were further cultured without the radioactive thymidine for 72 h. Incorporated radioactivity was measured in equal number of cells in each culture, which revealed that			
	B) The fast growin C) The slow growin	nes had the same amount g cells had more radioac ng cells had more radioa ells had any radioactivit	tivity ctivity	vity
17.		sure of a solution conta a litre of solution at 27°C		gm of sucrose (mol. wt. 342) LatmK ⁻¹ mol ⁻¹) is?
	A) 0.246	B) 0.0273	C) 0.164	D) 0.123
18.	Given are the seq highest melting po		double-stra	nded DNA. The one with the
	A) GAGATCTCG C) GAGATCTTG		,	FATCGATATCTC FATCTATATCTC
19.	The preferred syste	em for large-scale produc	ction of influ	enza virus for vaccination is
	A) Genetically mo C) Chick embryo	dified bacteria	B) Transge D) Yeast c	<u>=</u>

20.	X-ray diffraction of wool shows repeated structural units spaced at 5.2 Å, which is changed to 7.0 Å on steaming. This is due to the conversion of secondary structure from			
	A) β-sheet to random C) β-sheet to α-helix		B) α -helix to random D) α -helix to β -sheet	
21.	Vasopressin, an ant by thekidney, is secr	-	ponsible for increased	absorption of water
	A) Adrenal glandC) Thyroid gland		B) Pituitary gland D) Parathyroid gland	i
22.	Helicobacter pylori because it	can survive in the hig	thly acidic environmen	nt of human stomach
	B) Rapidly invades (C) Is capsulated and			
23.	Pfu polymerase has			
	A) Proof-reading act		B) False priming act D) RNA polymerase	•
24.	The molar abosorptivity of $a1\times10^{-4}M$ ATP solution, which has an absorbance of 0.2 and pathlength is 2.5 cm			n absorbance of 0.20
	A) 750	B) 800	C) 600	D) 890
25.		substrate concentration. Assuming k _{cat} to be 6	$n = 40 \mu M$, the reaction $00 s^{-1}$, the K_M will be	on velocity Vo of an
	Α) 0.1 μΜ	Β) 1 μΜ	C) 10 µM	D) 100 μM
26.		Ггр-Ser-Gly-Leu-Arg-l c field at pH 3.0. It wi	Pro-Gly, having an iso Il migrate towards	pelectric point of 7.8,
	A) Anode C) Both anode and c	athode	B) Cathode D) Neither anode no	r cathode
27.		f molecular weights 75 ht of tripeptide in Dalto	5, 89 and 105 Dalton ea on will be	ach have a tripeptide.
	A) 251	B) 233	C) 269	D) Cannot be predicted
28.	_	with pKa values of 2.2	ole groups. These are the 2, 9.2 and 10.8, respect	
	A) 5.7	B) 6.5	C) 10	D) 9.2
29.	•	ross, 200 recombinance between two genes i	t phenotypes were ob	oserved among 2402
	A) 2 cM (centiMorg C) 8.5 cM	_	B)2.4 cM D) 10 cM	

	B) One out of 10 b C) Ten phage infec	n is infected by the placteria is infected by one bacterium e phage population is	the phage		
31.	The specific productivity (q_p) of cellulase production by <i>Aspergillus niger</i> follows a linear relationship with the specific growth rate (μ) and is of the form $q_p = \alpha \mu + \beta$, where α and β are constants. Assuming that the values of α and β are 0.006 and 25, respectively, which type of product formation kinetics is TRUE?				
	A) Growth-depend B) Non-growth-de C) Growth and non D) Inhibition kinet	pendent kinetics 1-growth-dependent k	inetics		
32.	children. If both p	parents are heterozygo	cygous recessive condition ous for the disease causermal? Assume that the disease causermal?	ing gene, what is the	
	A) 1/16	B) 3/16	C) 9/16	D) 12/16	
33.			lls after 2.5 hours of expo	_	
	A) $20x10^4$ cells C) $40x10^5$ cells		B) $10x10^5$ cells D) $16x10^6$ cells		
34.	When a number of	genes are transcribed	l as one mRNA, such mR	NA is termed as	
	A) multimeric	B) polymeric	C) polycistronic	D) polysomal	
35.	Which one of the f	following is NOT true	of RNA polymerase II?		
	B) It makes an RNC) It does not synt	hesize rRNA and tRN	trand of a double-strande	d DNA at any given time	
36.	P. Citric ac Q. Polyhyd R. Gentam S. Ethanol	roorganisms. id lroxyalkonates ycin S-iv	ii. Zymomon iii. Aspergill iv. Ralstonic B) P-iv, Q-ii	osporapurpurea asmobilis us niger aeutropha , R-iii, S-i	
	C) P-iii, Q-iv, R-i,	S-ii	D) P-iii, Q-i	, R-iv, S-ii	
37. Choose the option that lists the correct sequence of steps involved in general P. Injection of expression vector into patient Q. Wild-type gene is inserted into expression vector R. Wild-type gene is isolated and cloned S. Wild-type gene is transcribed and translated in the patient					
	A) Q, S, P, R	B) Q, P, R, S	C) R, P, Q, S		

A phage infects bacteria at a multiplicity of infection (moi) of 0.1. This means that

30.

38.	Match the techniques in column I with their primary applications in Column II:					
	(i) Circular Dichroisi (ii) Ion exchange chr (iii) Immunoprecipita (iv) X-ray crystallogi	omatography ation	(P) Atomic resolution struc(q) Identifying protein-prot(r) Secondary structure of p(s) Separation of protein mi	ein interaction proteins		
	A) (i)-(q), (ii)-(s), (ii)-(c) (i)-(r), (ii)-(P), (iii)-(p)		B) (i)-(q), (ii)-(s), (D) (i)-(r), (ii)-(s), (ii			
39.	The most preferred s	substrate for co	nversion into methane by me	thanogens is:		
	A) Glucose	B) Butyrate	C) Acetate	D) CO ₂		
40.	How many moles of	biodiesel are o	btained from 1 mole of triole	ein		
	A) 1	B) 3	C) 2	D) 4		
41.	What is the trig transesterification rea	•	alcohol operating ratio biodiesel production	generally used in		
	A) 1: 3	B) 1:5	C) 1:4	D) 1:6		
42.	How much glucose c	an be obtained	upon the hydrolysis of 1 mo	le of cellulose		
	A) 180 g	B) 111.1 g	C) 100 g	D) 162 g		
43.	How much ethano cerevisisae from 1 m		ained upon fermentation	with Saccharomyces		
	A) 92.0 g	B) 88.0 g	C) 51.1 g	D) 48.8 g		
44.	How many ATP mo Zymomonas mobilis	lecules are prod	duced upon fermentation of	1 mole of glucose by		
	A) 1	B) 36	C) 2	D) 38		
45.	How many moles oxylose	of ethanol can l	be produced upon the ferme	entation of 1 mole of		
	A) 1	B) 2	C) 1.67	D) 2.67		
46.	Urea degrading bacte	eria is				
	A) Bacillus pasture	B) A. Niger	C) Micrococcus sp.	D) Mucor		
47.	Contribution of CO2	2 in the carbon of	cycle is by			
	A) Respiration by miB) Decarboxylation ofC) Spliiting of free faD) All of the above	of amino acids i				
48.	Nitrogen cycle has li	nkage with				
	A) Carbon cycle C) Phosphorus cycle		B) Sulfur cycle D) All of these			

- 49. Which of the following is the most efficient biofilteration in the secondary treatment of the sewage?
 - A) Sand filters

B) Contact filters

C) Trickling filters

D) None of these

- 50. Pasteurization involves the
 - A) Exposure of food to 71.1°C for 15 sec to destroy spoilage microorganisms
 - B) Exposure of food to heat to inactivate enzymes that cause undesirable effects in foods during storage.
 - C) Exposure of food to 71.1°C for 15 sec to destroy pathogenic microorganisms
 - D) Use of irradiation to destroy certain pathogens in foods.

Chemical Engineering(Ph.D)

1. In a single	1. In a single tank system, the transfer function of level to inlet flow rate is					
A) R/τ	S	B) $R/(\tau S + 1)$	C) $1/(\tau S + 1)$	D) 1/τS		
2. Gain and pr	oportional bar	nd are				
B) Two	o different cor riprocally rela		nits			
3. What is the	ratio of adiaba	atic compressibility to	isothermal compressib	ility?		
A) 1		B) < 1	C) > 1	D) 0		
4. Duhring's	olot' is of use	in				
A) Ext C) Lea	ractive distilla ching	ntion	B) Evaporation D) Absorption			
5. The Knudse	5. The Knudsen Diffusivity is dependent on the					
	lecular velocit lecular mean f	•	B) Pore radius of the D) Molecular velocit	catalyst only y & pore radius of catalyst		
6. The residence time distribution of an ideal CSTR is						
A) $\frac{1}{\tau} \exp(-t/\tau)$ B) $\tau \cdot \exp(-t/\tau)$ C) $\exp(-t/\tau)$ D) $\frac{1}{\tau}(-t/\tau)$ 7. With increase in temperature, the internal energy of a substance			D) $\frac{1}{\tau}(-t/\tau)$			
B) Dec C) Rer	 A) Increases B) Decreases C) Remains unchanged D) May increase or decrease; depends on the substance 					
8. The reverse	process of fra	ctional crystallization	is called			
A) Stri C) Dif	pping ferential distil	lation	B) LeachingD) Absorption			
9. Both asphal	t and wax are	produced by	_base crude oils.			
A) Nap	ohthenic	B) Asphalt	C) Paraffin	D) Mixed		
10. Maximum	size of reduct	ion in a ball mill is dor	ne by			
A) Cor	npression	B) Attrition	C) Cutting	D) Impact		
11. Assuming 263°C and		eys perfect gas law, c	alculate the density o	f CO ₂ (in kg/m ³) at		
A) 1		B) 2	C) 3	D) 4		
12. The drivin	g force for sep	paration by distillation	is the highest			
B) At 1	 12. The driving force for separation by distillation is the highest A) At total reflux B) At minimum reflux C) At an intermediate reflux between the total and the minimum 					

D) At the point of intersection of the enriching section operating line with the equilibrium curve

13. Which	of the following s	tatements is correct	?			
B) (C) (the gas			
14. When a	derivative mode	is added to a propor	rtional co	ontroller, it		
B) I C) I	Eliminates offset Eliminates oscilla					
15. The uni	ts of thermal con	ductivity in SI unit a	are			
A) '	W/(m.K)	B) J/(m.K)	C) V	$V/(m^2.K)$	D) $J/(m^2.K)$	
16. A series	s of equal paymer	nts (e.g., deposit or o	cost) mac	le at equal int	ervals of time is known a	ıs
	Perpetuity Annuity			Capital charge Outure worth	factor	
17. Prandtl	number is define	d as				
A)	μ/k .Cp	B) h.D/k	C) ρ	.Cp/k	D) µ.Cp/k	
18. What is	Vinegar?					
	Dilute solution of Food grade phosp			,	distilled alcohol ine solution	
19. For fre coeffic		oherical particles in	accord	ance with N	ewton's law, the drag	
B) I C) I	Reynolds number	onal to the particle inversely proportion onal to the 0.6 power				
20. The mo	st important proc	ess currently used for	or indust	rial productio	n of carbon black is –	
	Furnace black pro Lamp black proc				el black process al black process	
21. The seg	regation model w	vill give the highest	conversi	on for reactio	n order	
,	Less than one Greater than one			B) Equal t D) Equal t		
		n, the plot of ln K This means that	vs. 1/T	is a straight	line. K is the equilibriu	m
B) C) 7	The specific heats	is zero s independent of ter of the reactants and a linear function of	l product	s are identica	1	

	An ideal gas at 35 bar, pecific entropy (J/mol.F		iabatically to 5 bar. W	That is the change in
	A) 0	B) 32.39	C) 0.587	D) 103.77
24. N	Tumber of chemical spe	cies in a colloidal syste	em is	
	A) 1	B) 2	C) 3	D) 4
25. T	he most conducive surf	ace for dropwise cond	ensation to occur is the	surface.
	A) Coated	B) Oily	C) Glazed and polish	ed D) Smooth
26. V	With increase in tempera	ature, the total emissivi	ty of conductors	
	A) Increases	B) Decreases	C) remains same	D) Decreases linearly
27. F	or pumping slurry, one	can use ap	oump.	
	A) Reciprocating	B) Diaphragm	C) Centrifugal	D) Pneumatic
28. S	olenoid valve works lik	tecontroller.		
	A) P	B) P-D	C) P-I-D	D) on-off
	The open loop transfer for	unction of a process is	$K \cdot \frac{(s+1)(s+4)}{(s+2)(s+3)}$. In the roo	ot locus diagram, the
р	oles will be at	D) 1 4	C) 2 2	D) 2.2
	A) -1, -4	B) 1,4	C) -2,-3	D) 2,3
30. C	Oxygen carrying pipelin	es in chemical industri	es are coloured with	colour.
	A) Yellow	B) Black	C) Blue	D) Red
	For an isothermal secon required for 90% conver	• •		
	A) 2	B) 4	C) 11	D) 22
32. C	Sibbs free energy per me	ole for a pure substanc	e is equal to the	
	A) Latent heat of vapC) Molal boiling point		B) Chemical potentia D) Heat capacity	ıl
33. V	Which is a state function	n?		
	A) Specific volume	(B) Work	C) Pressure	D) Temperature
34. Iı	n a solution containing	0.3 Kg mole of solute a	and 600 kg of solvent,	the molality is
	A) 0.5	B) 0.6	C) 2	D) 1
35. T	The lowest temperatureof the atmospheric		e theoretically cooled i	n a cooling tower is
	A) Dry Bulb Temper C) Average of DBT		B) Wet Bulb Temperature (WBT) D) Difference of DBT and WBT	
36. Iı	n a binary system, sepai	ration is very efficient	when the relative volat	ility is
	A) 1	B) 0.5	C) < 1	D) > 1

	If a feed of 500 tons/hr 25% concentration is ed		s fed to a crystallizer, the	he product obtained at
	A) 75	B) 100	C) 150	D) 200
38.	Weight of 56 litres of a	nmmonia at NTP is	gm.	
	A) 2.5	B) 56	C) 42.5	D) 2800
39.	The filter medium resis	stance is controlled by		
	A) Pressure drop al C) Both pressure dr		B) Flow rate alone D) Cake thickness	
40.	Which of the following	g is used to set the dian	neter of the distillation	column?
	A) Number of theoB) Static SubmergeC) Allowable vapoD) Length of straig	ence	cross-flow tray	
41.	Portland cement mainl	y consists of		
	A) CaO & SiO ₂ C) CaO & Al ₂ O ₃		B) SiO ₂ & Al ₂ O ₃ D) CaO & Fe ₂ O ₃	
42.	A centrifugal pump is existing power, the spe		-	
	A) 360	B) 540	C) 1080	D) 1308
43.	Out of the following cost as well as pressure	_	es, which one incurs	maximum installation
	A) Flow nozzle	B) Venturimeter	C) Rotameter	D) Orifice meter
44.	The gas which may can	use explosion in sewer	pipes is	
	(A) CO	B) H ₂ S	C) NH ₃	D) CH ₄
45.	Dissolved oxygen cont	ent in river/water strea	ms is	
	A) Minimum at noo C) Maximum at mi		B) Maximum at no D) same throughou	
46.	Out of the following gas pressure drop is the	-	vices, for a given set of	f operating conditions,
	A) Wetted WallC) Perforated Tray		B) Bubble Cap D) packed	
47.	The most common pac	king used in industrial	operations isrin	gs.
	A) Rasching	B) Lessing	C) Cross-partition	D) Single spiral

48. Moisture can be removed from lubricating oil u	ising			
A) Tubular centrifugeC) Sparkler filter	B) Clarifier D) Vacuum leaf filter			
49. Which of the following is not categorized as a 'mechanical operation'?				
A) Agitation	B) Filtration			
C) Size enlargement	D) Humidification			
50. Carbon dioxide required in the Solvay process	is obtained by			
A) Burning 100% pure coke	B) Burning coal			
C) Heating limestone	D) Heating magnesium bicarbonate			

$Civil\ Engineering (Construction\ Technology\ \&\ Management) (Ph.D.)$

1.	The minimum compressive strength of 1st class brick should be					
	A) 75 kg/cm ²	B) 90 kg/cm ²	C) 105 kg/cm ²	D) 120 kg/cm ²		
2.	For construction of st	tructure under water th	e type of lime used is			
	A) Hydraulic lime	B) Fat lime	C) Quick lime	D) Pure lime		
3.	If the whole circle bearing of a line is 270°, its reduced bearing will be					
	A) N 90° W	B) S 90° W	C) W 90°	D) 90° W		
4.	Plotting of inaccessib	ole point on plane table	e is done by			
	A) Intersection	B) Traversing	C) Radiation	D) None of these		
5.	The deformation of b	ar per unit length in th	e direction of the force	is known as		
	A) Linear strain	B) Lateral strain	C) Volumetric strain	D) Shear strain		
6.	The equivalent length of a column fixed at both ends is					
	A) 0.5 L	B) 0.7 L	C) 2 L	D) 1.5 L		
	Where L is the clear span between fixed ends.					
7.	Beams of uniform strength are preferred to those of uniform section because these are economical for					
	A) Large spans		B) Heavy weights			
	C) Light weights		D) Small spans			
8.	The property of a ma	terial by which it can b	be beaten and rolled in	plates is called		
	A) Ductility	B) Malleability	C) Plasticity	D) Elasticity		
9.	Simple bending equation is					
	A) $\frac{M}{I} = \frac{R}{E} = \frac{f}{y}$		$B) \frac{I}{M} = \frac{E}{R} = \frac{y}{f}$			
	C) $\frac{M}{I} = \frac{E}{R} = \frac{f}{y}$		$D)\frac{M}{I} = \frac{E}{R} = \frac{y}{f}$			
10.	The velocity at which	n the laminar flow stop	s is known as			
	A) Velocity of appro	ach	B) Lower critical velo	ocity		
	C) Higher critical vel	ocity	D) None of these			

11.	For keeping the stress wholly compressive the load may be applied on a circular column within a concentric circle of diameter						
	A) $\frac{d}{2}$	B) $\frac{d}{3}$	C) $\frac{d}{4}$	D) $\frac{d}{8}$			
	Where d is the dia of	the circular column.					
12.	The reaction at support A of the beam shown in figure below is						
	A) Zero	B) 5t	~~~~~	1t/m			
	C) 10t	D) 1t	A B	C Em			
13.	The deflection due to	o couple M at the free	end of a cantilever of le	ength L is			
	A) $\frac{ML}{EI}$	B) $\frac{2ML}{EI}$	C) $\frac{ML^2}{2EI}$	$D) \frac{M^2 L}{2EI}$			
14.	Units of coefficient of kinematic viscosity are						
	A) Length	B) Depth	C) Shape	D) Both (B) and (C)			
15.	Hydraulic pressure on a dam depends upon its						
	A) $m^2/_{sec}$	B) $^{NS}/_{m^2}$	C) $^{NS}/_{m^3}$	D) $\frac{\text{kg}}{\text{m}-\text{sec}}$			
16.	Flow in pipes is turbulent if Reynold's number is						
	A) < 2100		B) > 3000				
	C) Between 2100 &	3000	D) None of these				
17.	A floating body attains stable equilibrium if the metacentre is						
	A) At the centroid		B) Above the centroid				
	C) Below the centroid		D) Anywhere				
18.	Sullage does not contain waste from						
	A) Bathroom	B) Washbasin	C) Kitchen sinks	D) Toilets			
19.	If D.O. concentration falls down to zero anywhere in a natural drain, it indicates						
	A) Zone of degradation		B) Zone of active decomposition				
	C) Zone of recovery		D) Zone of clear wat	er			
20.	Average temperature	e of sewage in India is					
	A) 10°C	B) 20°C	C) 15°C	D) 25°C			

21.	Standard BOD of wa	iter is taken for		
	A) 1 day	B) 2 days	C) 3 days	D) 5 days
22.	The detention time o	f a setting tank may be	defined as the time red	quired for
	A) A particle to traveB) A particle to traveC) The flow of sewayD) None of the above	el from top surface to b ge to fill the tank	ottom sludge zone.	
23.	Cohensionless soil is	;		
	A) Sand	B) Silt	C) Clay	D) clay and silt
24.	The specific gravity critical hydraulic gra		soil sample are 'G' an	d 'e' respectively. The
	$A)\frac{G-1}{1+e}$	$B)\frac{G+1}{1+e}$	$C)\frac{G+1}{1-e}$	$D)\frac{1-G}{1+e}$
25.	If the coefficient of pressure K_p shall be	active earth pressure	Ka is $\frac{1}{3}$, then the coef	ficient of passive earth
	A) $\frac{1}{3}$	B) $\frac{2}{3}$	C) 3	D) $\frac{3}{2}$
26.	The effective size of	soil particles is defined	d by	
	A) D ₁₀	B) D ₂₀	C) D ₃₀	D) D ₅₀
27.	Minimum grade of co	oncrete for construction	n under Sea water is	
	A) M ₂₀	B) M ₃₀	C) M ₃₅	D) M ₁₅
28.	A cantilever wall sho	ould not be used for hei	ights more than	
	A) 4m	B) 6m	C) 8m	D) 10m
29.	Expansion joints are	provided if length of c	oncrete structure excee	eds
	A) 50m	B) 45m	C) 35m	D) 40m
30.	The shuttering of a b	all measuring 4m x 5m	n can be removed after	
	A) 5 days	B) 7 days	C) 14 days	D) 21 days
31.	A piezometer tube is	used only for measuring	ng	
	A) Low pressure		B) High pressure	
	C) Moderate pressure	e	D) Vacuum pressure	

34.	The maximum shea	ii suess q _{max} iii a fectai	iguiai beain section is	
	A) 1.25 q _{avg}	B) 1.5 q _{avg}	C) 2 q _{avg}	D) 2.5 q _{avg}
	Where q _{avg} is avera	ge shear stress.		
33.	If the diameter of a	reinforcing bar is 'd',	the exchange value of l	hook shall be
	A) 4d	B) 8d	C) 12d	D) 16d
34.	The diameter of lor	ngitudinal bars of a col	umn should never be le	ess than
	A) 6mm	B) 8mm	C) 10mm	D) 12mm
35.	A flat slab is suppo	rt		
	A) On beams		B) On columns	
	C) On beams and co	olumns	D) On column mon	olithically
36.	As the percentage of	of steel in beams increa	se	
	A) The depth of N.	A. decreases	B) The depth of N.A	A. increases
	C) Lever arm decre	ases	D) Lever arm increa	ases
37.	The shear reinforce	ment in R.C.C. is prov	ided to resist	
	A) Vertical Shear		B) Horizontal shear	
	C) Diagonal compr	ession	D) diagonal tension	
38.	Poisson's ratio for s	steel within elastic Lim	nit ranges from	
	A) 15 to 20	B) 25 to 33	C) 33 to 35	D) 45 to 50
39.		nertia of a section about N.A. is given		effective sectional area is
	A) $r = \sqrt{\frac{A}{I}}$	B) $r = \sqrt{\frac{I}{A}}$	C) $r = \left(\frac{1}{A}\right)^{\frac{3}{2}}$	D) $r = \sqrt{\frac{I}{A+I}}$
40.	For simply supporte	ed beam maximum per	missible deflection is	
	A) $\frac{1}{325}$ of the span		B) $\frac{1}{425}$ of the span	
	C) $\frac{1}{150}$ of the span		D) $\frac{1}{36}$ of the span	
41.	The field capacity of	of soils depends upon		
	A) Capillary tension	n in soils	B) Porosity of soils	
	C) Both (a) and (b)		D) None	

42.	The difference in	level between the top of	of a bank and FSL of wat	er in canal is called		
	A) Berm	B) Free board	C) Height of bank	D) None		
43.	An outlet is said	to be proportional if its	flexibility is			
	A) Zero	B) Less than 1	C) More than 1	D) 1		
44.	In a Canal sypho	n, blow is				
	A) Under atmosp	oheric pressure	B) Pipe flow			
	C) With critical v	velocity	D) Under negative p	pressure		
45.	In a Sharda type	fall the rectangular cres	t may be used for dischar	rge up to		
	A) 6 cumec	B) 10 cumec	C) 14 cumec	D) 20 cumec		
46.	On concrete roads camber provided is					
	A) 1 in 20 to 1 in 24		B) 1 in 36 to 1 in 48	B) 1 in 36 to 1 in 48		
	C) 1 in 60 to 1 in	.72	D) 1 in 48 to 1 in 60)		
47.	The minimum width of pavement of a National Highway should be					
	A) 4.7m	B) 5.7m	C) 6.7 m	D) 8.0m		
48.	Bar Charts are si	uitable for				
	A) Minor works		B) Major works			
	C) Very large pro	ojects	D) All of these			
49.	For completion o	of a project the critical p	ath network represents			
	A) Minimum time		B) Maximum time			
	C) Minimum cos	t	D) Maximum cost			
50.	The characteristic less than	c strength of concrete is	s the strength of material	of the test result are not		
	A) 5%	B) 3%	C) 10%	D) 7%		

Computer Science & Engineering(Ph.D.)

1. If $\log_6 161 = a$, $\log_6 23 = b$, What is the value of $\log_7 6$ in terms of a and b?

	A) a/b	B) <i>a</i> + <i>b</i>	C) $^{1}/_{a-b}$	D) b/a
2.	The point (2, 1) is shifted increasing ordinate, to reach			the direction of
	A) (5, -2)	B) (-1, 4)	C) (3, -4)	D) (-3, 2)
3.	Let $f(x) = [\cos x + \sin x]$, equal to x . The number of po			teger less than or
	A) 3	B) 4	C) 5	D) 6
4.	If $f(x) = (x - p)^2 + (x - q)^2$ is equal to	$(x-r)^2 + (x-r)^2$. The $f(x)$	(x) has minimum value	e at x = t where t
	A) $\frac{p+q+r}{3}$	B) $\sqrt[3]{pqr}$	$C)\frac{3}{\frac{1}{p} + \frac{1}{q} + \frac{1}{r}}$	$D)((p+q)/r)^2$
5.	The equation of a straight lin $\frac{x+1}{-3} = \frac{y-2}{2} = \frac{z}{1}$ and $\frac{x-1}{1} = \frac{y}{-3}$			dicular to the line
	A) $x = y = z$		B) $\frac{x}{4} = \frac{y}{3} = \frac{z}{6}$	
	C) x = 2y = 3z		D) $\frac{x}{3} = \frac{y}{1} = \frac{z}{2}$	
6.	For some number system we	have $(211)_r = (152)_r$	0_8 then the value of r is	1
	A) 6	B) 7	C) 9	D) 5
7.	Simplification of the Boolean	n function $A \oplus \bar{A}B \oplus \bar{A}$	would give	
	A) $A + B$	B) $A \oplus B$	C) $A + \overline{B}$	D) <i>AB</i>
8.	If A=1 in the logic equation	$[A+C\{\bar{B}+(\bar{C}+A\bar{B})$	$[\bar{A} + \bar{C}(A+B)] = [\bar{A} + \bar{C}(A+B)]$	= 1 then
	A) B = C	$\mathrm{B})B=\bar{\mathcal{C}}$	C) $C = 0$	D) $C = 1$
9.	In a 3-bus datapath, the minumber of operations supporespectively. The total number	rted are 8 and Src1, S	rc2 and desti require 2	0, 16 and 20 bits
	A) 2 ⁶⁴	B) 2 ⁸	C) 2^{56}	D) 2^{61}
10	Booth's multiplication skips and subtract steps needed to average value n_{avg} is less that	multiply two <i>n</i> -bit n	umbers to n to variable	

A) *n*-1

B) n/3 C) n/2 D) n/4

11. Consider a system employing interrupt driven I/O for a particular device that transforms data at an average of 8Kbps on continuous basis. The interrupt processing takes about 100µs and I/O device interrupts processor for every byte. Let assume that the device has two 16-byte buffers and interrupts the processor when one of the buffer is full. While executing the ISR, the processor takes about 8µs for the transfer of each byte. Then what is the fraction of the processor time is consumed by this I/O device?				
A) 8%	B) 11%	C) 15%	D) 23%	
12. A 4-stage instruction pipeline executes a 100 instruction program. The probability of occurrence of a conditional and unconditional branch is 0.4 and the probability of execution of branch instruction I _B causing a jump to non-consecutive address is 0.1. The speedup factor for the instruction pipeline compared to the execution without pipeline is				
A) 3.14	B) 3.21	C) 3.37	D) 3.48	
13. A block of addresses is gran is 206.16.37.39/28. What is	_	ntion. We know that on	e of the addresses	
A) 206.16.37.0	B) 206.16.37.1	C) 206.16.0.31	D) 206.16.37.32	
14. In IPv4 packet the value of being carried by this packet?		pinary. How many byt	es of options are	
A) 20	B) 16	C) 12	D) 2	
15. A pure ALOHA network tra is throughput if system (all s			=	
A) 135	B) 167	C) 192	D) 213	
16. If an attacker impersonates to get access of unauthorized	• • •	•	chanism and tries	
A) Passive attackC) Reply attack		B) Masquerade attac D) Distributed Denia		
17. A computer is regulated by filled at a rate of 2Mbps a duration for which computer	and is initially filled	to capacity of 16 Mb		
A) 1.6 s	B) 2.0 s	C) 3.2 s	D) 4.0 s	
18. Sliding window protocol is The bottle neck bandwidth delay between them is 80 ms	on path between stati	ion 1 and 2 is 128 kb	ps and round trip	
A) 20	B) 40	C) 60	D) 80	

19. The output of the following code would be, assume the language uses static scope:

```
int a=3:
void f1(){print (a);}
void f2()\{\text{int a=5; }f1()\}
void f3(){int a=7; f1()}
main()
{f1()
f2();
f3();
```

A) 333

- B) 3 5 7
- C) 5 5 7
- D) 775

20. Consider the following fragment of C code in which i,j and n are integer variables.

```
for(i=n,j=0;i>0;i/=2,j+=1);
```

The value of j after the termination of for loop is

A) n/2 + 1

B) n^2

C) $celing(log_2 n) + 1$

- D) $floor(log_2 n) + 1$
- 21. The number of substrings (all lengths inclusive) those could be formed from a character string of length s is
 - A) s^2

- B) $s(s+1)^2$ C) s(s+1)/2 D) s(s-1)/2
- 22. Consider a process of inserting an element into a Max Heap, where Max Heap is represented by an array. Suppose a binary search operation is performed on the path from the new leaf to the root to find the position for the newly inserted element, the number of comparisons performed is:
 - A) $\theta(\log_2 n)$
- B) $\theta(\log_2 \log_2 n)$ C) $\theta(n)$
- D) $\theta(n\log_2 n)$

23. Consider the following program segment:

```
struct CNode{
struct Cnode *leftchild;
int element;
struct Cnode *leftchild;}
int test(strcut Cnode *ptr)
int n=0;
if (ptr!=NULL)
{if (ptr->leftchild!=NULL)
    i. n=1+test(ptr->leftchild);
if (ptr->rightchild!=NULL)
   ii. n=max(n, 1+test(ptr->rightchild));
}
return(n);
}
```


24. The height of a complete binary tree is given as *h*. Consider the height of the tree as number of edges in the longest path from the root to the leaf. The minimum number of nodes possible in the tree is

A) 2^h B) $2^h - 1$ C) $2^h + 1$ D) $2^{h+1} - 1$

25. Suppose we store *n* elements in a *m*-slot hash table using chaining. However, each chain is stored using an AVL tree instead of linked list. If *m*=*n*, what is the worst case running time of insert, delete, and search in this hash table? (Simple uniform hashing is not used)

A) O(1) B) O(1 + lgn) C) O(lglgn) D) O(n)

26. Let S be an NP-complete problem, and Q and R be two other problems not known to be in NP. $Q \le_p S$ and $S \le_p R$. Which one of the following g statements is TRUE?

A) R is NP-Complete B) R is NP-hard C) Q is NP-Complete D) Q is NP-hard

27. Consider the following two functions:

$$f(n) = \begin{cases} n^3 & 0 \le n \le 10^4 \\ n^2 & n > 10^4 \end{cases}$$

$$g(n) = \begin{cases} n & 0 \le n \le 100 \\ n^3 & n > 100 \end{cases}$$

Which of the following is TRUE?

A) f(n) is O(g(n)) B) f(n) is $O(n^3)$ C) g(n) is O(f(n)) D) g(n) is O(n)

28. Consider a demand paged memory system with memory access time of $125\mu s$. The page fault service time is 400 ms. If the page fault rate is 0.1%, then the effective access time is

A) 480 μs B) 500 μs C) 525 μs D) 560 μs

29. Consider the three processes, all arriving at time zero, with burst time of 10, 20 and 30 units respectively. Each process spends first 20% of execution time doing I/O, the next 70% of time doing computation and the last 10% of time doing I/O again. The operating system uses a shortest remaining compute time first scheduling algorithm and schedules a new process either when running process gets blocked on I/O or when the running process finishes its compute burst. Assume that all I/O operations can be overlapped as much as possible. For what percentage of time does the CPU remain idle?

A) 0% B) 9.6% C) 10.6 % D) 23.4%

pages loaded initially	y. If the system acces		ge frames and there is no order and then assess the ur?
A) 45	B) 46	C) 47	D) 48
31. Which of the followi	ng relational algebra	expression executes fast	?
A) $\sigma_P(R) \times \sigma_O(S)$		B) $\sigma_{P^{\wedge}Q}(R \times$	<i>S</i>)
C) $\sigma_Q((\sigma_P(R) \times S)$		D) $\sigma_P(R \times (a))$	
32. Choose the correct op	ption for the followin	g statements:	
, -	an have NULL values key of relation cannot	contain NULL values	
A) Both are false		B) Only (i) is	true
C) Only (ii) is true		, , ,	nd (ii) are true
		A, B, C} and having further be decomposed into two	unctional dependency set o relations:
A) R1 {A, B}, R2 {A	, B , C }	B) R1 {A, C}, R2 {A,	B, C}
C) $R1 \{A, B\}, R2 \{A, B\}$	<i>C</i> }	D) $R1 \{A, B\}, R2 \{B, A\}$	<i>C</i> }
statements is TRUE? S_1 : $r_1(X)$; $r_1(X)$	•	$(Y); w_1(X)$	Which of the following
	are conflict serializ		
-	S ₂ are not conflict seri	not conflict serializable	
		2 is conflict serializable	
35. Consider a B+ tree minimum number of			node is 7. What is the
A) 1	B) 2	C) 3	D) 4
36. If we have 5 bubble level 2 DFD, then at			nposed into 4 bubbles in
A) 4	B) 5	C) 6	D) 20
37. For a function of 4 va	ariables, how many ro	obust cases are to be gen	nerated?
A) 16	B) 17	C) 25	D) 125

38. A software project involves 12, 16, 20, 30, 40 and 45 da T3 can start only after T2 c What is slack time of task T	ays respectively. T2 arompletes. T5 and T6 c	nd T4 can start only af	ter T1 completes
A) 0	B) 6	C) 20	D) 28
39. A 20 mbps satellite link ha 'go-back-n ARQ' scheme w the maximum data rate poss	with n set to 10.Assuming	•	
A) 18 mbps	B) 15 mbps	C) 13 mbps	D) 10 mbps
40. If TCP RTT is currently 40 and 24 ms respectively. What	-	-	me in after 26, 32
A) 34.62 ms	B) 33.94 ms	C) 32.95 ms	D) 31.34 ms
41. In an encryption scheme the respectively. What could be		of p and q are select	ed to be 5 and 7
A) 12	B) 11	C) 9	D) 3
42. A connected planar graph h there?	as 30 vertices each wi	th degree 3, then how	many regions are
A) 12	B) 15	C) 16	D) 17
43. Sum of the Eigen values of	the following matrix is [1 5 6] [7 8 9] [2 3 4]		
A) 13	B) 16	C) 19	D) 32
44. A single subobject is inherit the class derivation in	ed regardless of how n	nany times. The base c	lass occurs within
A) Multiple inheritanceC) Protected inheritance		B) Public inheritance D) Virtual inheritance	
45. Language generated by the g	grammar $S \to a. S b. s $	$ a b \in is$	
A) $(a + b)^*$	B) $a.(a + b)^*$	C) (aa)*	D) $(bb)^*$
46. A pushdown machine behav	ves like a Turing machi	ine when number of au	xiliary memory it
A) 0	B) 1	C) 2	D) 4

- 47. Let L₁be a regular language, L₂ be a Deterministic CFL, and L3 a R.E., but not Recursive Language. Which one of the following statements is false?
 - A) $L_1 \cap L_2$ is deterministic CFL
- B) $L_3 \cap L_1$ is recursive

C) $L_1 \cup L_2$ is CFL

- D) $L_1 \cap L_2 \cap L_3$ is R.E.
- 48. What is the solution of the recurrence relation $a_n = 10a_{n-1} 33a_{n-2} + 36a_{n-3}$ with the initial conditions of $a_0 = 1$, $a_1 = 9$ and $a_2 = 48$?
 - A) $a_n = (n+2)3^n + 3.(4^n)$

B) $a_n = (n-2)3^n + 3.(4^n)$

C) $a_n = n(3^n) + 4^n$

- D) $a_n = (n-2)4^n + 3^{n+1}$
- 49. The truth value of $f(x, y, z) = (x \lor \neg y) \land (\neg x \lor y) \land z$ is T if x, y, z has the truth values
 - A) T, T, T
- B) F, F, F C) T, F, F
- D) F, T, F
- 50. The set of strings over {a,b} having exactly 3b's is represented by regular expression
 - A) a*bbb
- B) a*ba*ba*b
- C) ba* ba*b
- D) a* ba* ba* ba*

Electrical & Electronics Engineering(Ph.D.)

1.	The power delivered to a star-connected load of R ohms per phase, from a 3-phase bridge inverter fed from fixed DC source, is 10KW for 180 ⁰ mode. For 120 ⁰ mode, the power delivered to load would be				
	A) 10 KW	B) 5 KW	C) 6.667 KW	D) 7.5 KW	
2.		time period is T, then		supplies a purely inductive which each of the feedback	
	A) T	B) T/2	C) T/4	D) T/8	
3.	In DC choppers, per	unit ripple is maximun	n when duty cycle α is		
	A) 0.2	B) 0.5	C) 0.7	D) 0.9	
4.		cycle time of 3msec. The	l voltage consists of red ne average output volta	ctangular pulses of duration age and ripple factor for	
	A) 25 V, 1	B) 50 V, 1	C) 33.33 V, $\sqrt{2}$	D) 33.33 V, 1	
5.			ulse converter feeding C) 30 ⁰ to 150 ⁰		
6.	angle $\alpha = 30^{\circ}$. The		ripple expressed as a	is operating with a firing ratio of the peak output do	
	A) 0.5	B) $\frac{\sqrt{3}}{2}$	C) $(1 - \frac{\sqrt{3}}{2})$	D) $\sqrt{3} - 1$	
7.	-	=	ion of a thyristor is 2 g value of dv/dt in V/µ	20 picofarad. The charging as is	
	A) 50	B) 100	C) 200	D) 500	
8.	A GTO with anode f	ingers has			
	A) No reverse blocki C) High turn-off time		B) Reduced tail curred D) Reduced turn-off		
9.		•		ositive and negative group nental rms value of output	
	A) $\frac{600}{\pi}$	B) 300√3	C) $\frac{300\sqrt{3}}{\pi}$	$D)\frac{300}{\pi}$	

10.	*	Irn ratios have impedances of 0.5+j3 ohms and If they operate in parallel, how will they share a
	A) 50 KW, 50 KW C) 78.2 KW, 21.8 KW	B) 62 KW, 38 KW D) 85.5KW, 14.5 KW
11.	A 40 KVA transformer has a core loss of proportion of full load at maximum efficie	400 Wand a full load copper loss of 800 W. The ncy is
	A) 50% B) 62.3%	C) 70.7% D) 100%
12.	A dc shunt motor has external resistant respectively. Armature current can be redu	ee Ra and Rf in the armature and field circuits ced by keeping
	A) Ra minimum and Rf maximum C) Ra minimum and Rf minimum	B) Ra maximum and Rf maximum D) Ra maximum and Rf minimum
13.	Three-point starter for dc shunt motor is speed is required because	not used where wide speed control above rated
	A) The motor may stop at high speedC) Hunting may occur in the motor d)	B) The motor may stop at low speed C) The motor may attain dangerously high speed
14.	A cylindrical-rotor synchronous generator	will deliver maximum power output when
	 A) Load angle = synchronous impedance B) Load angle = internal power-factor ang C) Load angle = 90⁰ D) Input power factor angle is unity 	•
15.	· · · · · · · · · · · · · · · · · · ·	gligible armature resistance, operates at lagging pf bus. If its excitation is increased, then (δ = power
	 A) δ decreases and cos θ tends to become π B) δ decreases and cos θ tends to become π C) δ increases and cos θ tends to become π D) δ increases and cos θ tends to become π 	more lagging unity
16.	The torque angle of a synchronous machin defined as the space angle between	e operating from a constant voltage bus, is usually
	A) Rotor mmf wave and stator mmf wave B) Rotor mmf wave and resultant flux den C) Stator mmf wave and resultant flux den D) Stator mmf wave and resultant mmf wa	sity wave
17.	A voltmeter gives 120 oscillations per mi motor. The stator frequency is 50 Hz. The	nute when connected to the rotor of an induction slip of the motor is

C) 4%

D) 5%

A) 2%

B) 2.5%

18.	If the rotor pf of a 3-phase induction motor is 0.866, then special displacement between the stator magnetic field and rotor magnetic field will be			
	A) 30^{0}	B) 90 ⁰	C) 120 ⁰	D) 150 ⁰
19.	A pole pitch in electrical C) Greater than 180°		B) =180° mechanical D) Less than 180° ele	l ectrical
20.	A synchronous mach harmonic, the coil-sp	-	having coil-span of 12	slots. For eliminating third
	A) 6 slots	B) 8 slots	C) 9 slots	D) 10 slots
21.	Gas turbines can be b	prought to the bus bar f	from cold in about	
	A) 2 miniutes	B) 30 miniutes	C) 1 Hour	D) 2 Hour
22.	A 3-phase circuit bre	aker is rated at 2000 M	IVA, 33 KV, its makin	g current will be
	A) 35 KA	B) 49 KA	C) 70 KA	D) 89 KA
23.	SSR phenomenon is			
	A) Purely electricalC) Purely hydraulic		B) Purely mechanica D) (A) and (B)	1
24.	Efficiency of a powe	r transformer under no	-load condition is appr	oximately
	A) 75%	B) 50%	C) 25%	D) None of these
25.	The voltage and curr		on by $\sin(\omega t - \pi/6)$ $\sin(\omega t + \pi/6)$	
	The power consumed	_		
	A) 100 W	B) 50W	C) 86.6 W	D) 25 W
26.	The effect of series c	apacitance is		
	B) To decrease the et	irtual surge impedance ffective length of the li irtual surge impedance	ne	
27.	The main considerati	on for higher and high	er operating voltage of	transmission is to
	A) Increase the effice B) Reduce power loc C) Increase power tr D) (A) and (B)			

	A) Inductive	B) Capacitive	C) Resistive	D) (A) and (B)
29.	An alternator has a pha of alternator is reversed	=		ase the direction of rotation
	A) RBY	B) RYB	C) YRB	D) None of these
30.	The Buchholz relay p	protects a transformer f	rom	
	A) All types of interr C) Winding to winding		B) A turn to turn faul D) None of them	t
	A system is described by The output is given by Y Transfer function G(s) of	$Y = CX$ where $A = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$		1 0]
	A) $\frac{s}{s^2 + 5s + 7}$	$B) \frac{1}{s^2 + 5s + 7}$	C) $\frac{s}{s^2+3s+2}$	$D)\frac{1}{s^2+3s+2}$
32.	For $\emptyset(s) = \begin{bmatrix} \frac{s+6}{s^2+6s+5} & \frac{s^2}{s^2} \\ \frac{-5}{s^2+6s+5} & \frac{s^2}{s^2} \end{bmatrix}$	$\begin{bmatrix} \frac{1}{s^2 + 6s + 5} \\ \frac{1}{s^2 + 6s + 5} \end{bmatrix}$, the cofficent r	matrix A is	
A	A) $\begin{bmatrix} 6 & -5 \\ -6 & 0 \end{bmatrix}$	$B)\begin{bmatrix} 5 & -5 \\ 0 & -6 \end{bmatrix}$	$C)\begin{bmatrix} 6 & 0 \\ -5 & -6 \end{bmatrix}$	$D)\begin{bmatrix} 0 & 1 \\ -5 & -6 \end{bmatrix}$
33.	A system is describe by	state equation		
	$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - $	-[¹ ₁] u		
	The state transition mat	rix of the system is		
A	A) $\begin{bmatrix} e^{2t} & 0 \\ 0 & e^{2t} \end{bmatrix}$	$\mathbf{B}) \begin{bmatrix} e^{-2t} & 0 \\ 0 & e^{-t} \end{bmatrix}$	C) $\begin{bmatrix} e^{2t} & 1 \\ 1 & e^{2t} \end{bmatrix}$	$D)\begin{bmatrix} e^{-2t} & 1\\ 1 & e^{-t} \end{bmatrix}$

In a circuit the voltage and current is given by v = (10+j5) and i = (6+4j). The circuit is

35. Which of the following points is NOT on the root locus of a system with the open loop transfer $G(s)H(s) = \frac{K}{s(s+1)(s+3)}$ function

A)
$$s = -j\sqrt{3}$$
 B) $s = -1.5$ C) $s = -3$ D) $s = -\infty$

A) 0.5 rad/sec

28.

B)
$$s = -1.5$$

34. For the transfer function $(s) = \left[\frac{1}{s(s+1)(s+5)}\right]$, the phase cross over frequency is

B) 0.707 rad/sec

$$C) s = -3$$

C) 1.732 rad/sec

D)
$$s = -\infty$$

D) 2 rad/sec

	$G(s)H(s) = \frac{1}{(S+1)^3}$			
The gain marg	gin of the system is			
A) 2	B) 4	C) 8	D) 16	
	e points $s_1 = -3 + j4$ and s_2 p transfer function	$_2 = -3 - j2 \text{in the}$	e s-plane. Then , for a system	ı with
	$G(s)H(s) = \frac{K}{(S+1)^4}$			
A) s_1 is on the	e root locus, but not s ₂	B) s ₂ is on th	e root locus, but not s_1	
C) Both s ₁ and	$d s_2$ is on the root locus	D) Neither s	nor s ₂ is on the root locus	
38. A system with	n characteristic equation			
$S^2 + 2S^3$	$+ 11S^2 + 18S + 18 = 0$			
Will have clo	osed loop poles such that			
B) all poles li C) two poles	ies on the left half of the planties on the right half of the planties symmetrically on the imaginary axis of the	nne aginary axis of the	s-plane	
39. The character	ristic equation of a feedback	control system is		
2.5	$S^4 + S^3 + 3S^2 + 5S + 10 = 0$	0		
The number	of roots in the right half of th	e s-plane is		
A) Zero	B) 1	C) 2	D) 3	
40. A linear discre	ete time system has the chara	cteristic equation		
Z^3	-0.81Z=0			
The system				
A) Is stable				

36. The open loop transfer function of a feedback control system is

B) Is marginally stable

D) Stability cannot be assessed from the given information

C) Is unstable

41.	11. The intrinsic impedence η of a conducting medium for which σ =58MS/m, μ_r =1 at a frequency ,f=100MHz, is				
	A) $2.14 \times 10^5 \perp 45 \Omega$ C) $3.69 \times 10^{-3} \perp 45 \Omega$		B) $1.84 \times 10^{-3} \perp$ - D) $3.69 \times 10^{-3} \perp$ -		
42.	The polarization of wa	ve with electric field ve	$\cot E = E_0 \ e^{j(wt + \beta z)}$	$(a_x + a_y)$ is	
	A) LinearC) Left hand circular		B) Elliptical D) Right hand circul	ar	
43.	For a short circuited co		$Z_0 = 35 + j49 \Omega, \gamma = 1.4$	+j5 and the length of line	
	A) $82 + j39 \Omega$	B) $41 + j78 \Omega$	C) $68 + j46 \Omega$	D) $34 + j23 \Omega$	
44.	Divergence $(\nabla. A)$ at $(\frac{1}{2})$ be	$(\frac{\pi}{2}, \frac{\pi}{2}, 0)$ when the vector	$field A = rSin\emptyset a_r + r$	$r^2 cos \emptyset a_\emptyset + 2re^{-5z} a_z$, will	
	A) $\frac{5}{2}$	B) $-\frac{5}{2}$	C) $\frac{7}{2}$	D) $-\frac{7}{2}$	
45.	_	tic wave is travelling in ged poynting vector of the	_	s dielectric having ε_y =4 and e phase velocity v_p is	
	A) $1.5 \times 10^8 \ m/s$ C) $2.5 \times 10^8 \ m/s$		B) $3 \times 10^8 \ m/s$ D) $0.5 \times 10^8 \ m/s$		
46.	medium 1 (ε_1,μ_0). Th	ave is obliquely incident ne angle of incident is θ internal reflection occur	and θ_2 is the cricital	etric medium 2 ($\epsilon_2 \mu_o$) from angle. Then the	
	A) $\epsilon_1 > \epsilon_2$ and $\theta_1 < \epsilon_2$ C) $\epsilon_1 < \epsilon_2$ and $\theta_1 < \epsilon_3$	=	B) $\epsilon_1 < \epsilon_2$ and $\theta_1 > \epsilon_1 > \epsilon_2$ and $\theta_1 > \epsilon_2 < \epsilon_2 < \epsilon_2 < \epsilon_1 > \epsilon_2$	=	
47.	C	nsmission line the string , the string efficiency w	-	ow if dc voltage is supplied	
	A) 80%	B) More than 80%	C) Less than 80%	D) 100%	
48.	In case of a 3-phase	e short circuit in a system	m, the power fed into t	he system is	
	A) Mostly reactiveC) Active and reactive		B) Mostly active D) Reactive only		

49.	The load flow solution is always assured in case of				
	A) Newton-Raphson method C) Gauss-seidal method		B) Gauss methodD) None of these methods guarantees		'S
50.	The inertia constant H of a machine of 200 MVA is 2 pu its value corresponding to 40 MVA will be				ing to 400
	A) 4.0	B) 2.0	C) 1.0	D) 0.5	

${\bf Electrical\ Engineering} ({\bf Instrumentation\ \&\ Control})\ ({\bf 1076})$

1.	The maximum percentage quantization error for a 12-bit analog to digital converter is			
	A) ±0.00076%	B) ±0.012207%	C) ±3.125%	D) ±4.17%
2.		urrent transformer supplies a. The secondary voltage is	an overcurrent relay se	et at 25%pick up
	A) 1 V	B) 1.25 V	C) 2.5 V	D) 4 V
3.	A) Same as that of one sB) Greater than one stageC) Less than one stage	•		
4. A network contains linear resistors and ideal voltage sources. If values of doubled, then voltage source across each resistor is				I the resistors are
	A) Halved C) Increased by four time	es	B) Doubled D) Not changed	
5.	If $i(t)=(1/4)*(1-e^2 t)*u($ associated with $i(t)$ would	t), where u(t) is a unit sted include	ep voltage, then com	plex frequencies
	A) $s=0$ and $s=j^2$		B) $s=j^2$ and $s=-j^2$	
	C) $s=-j^2$ and $s=-2$		D) s=0 and s=-2	
6.	The intrinsic impedance	of a lossy dielectric medium i	is given by	
	<u>jωμ</u> σ	<u>j</u> ωε μ	$\sqrt{\frac{j\omega\mu}{(\sigma+j\omega\varepsilon)}}$	$\sqrt{rac{\mu}{\epsilon}}$
7.	Maxwell's divergence ed	quation for the magnetic field	is given by	
	A) $\Delta * B = 0$	B) $\Delta B = 0$	C) $\Delta^*B = \rho$	D) $\Delta B = \rho$
8.	When electromagnetic w	aves are propagated in a wave	eguide	
	C) They travel through t	nader walls of guide om the walls but do not travel the dielectric without touching four walls of the waveguide	•	
9.	The wave length of a war	we with propagation constant	$(0.1\pi + j0.2\pi) \text{ m}^{-1} \text{ is}$	

C) 15 m

D) 20 m

A) 5 m

B) 10 m

10.	0. Two point charges A =20 nC and B=10 nC are separated from each other by a distance of 25 cm in free space. What is the electric field at point P that is 15 cm away from A and 20 cm from B is				
	A) 6.31 kV/m	B) 7.31 kV/m	C) 8.31 kV/m	D) 9.31 kV/m	
11.	The average value of the	half-wave rectifier sine wave	of amplitude A _m is		
	(a) $\frac{A_m}{\pi}$	$\frac{A_m}{\sqrt{2}}$	$\frac{A_{_m}}{2}$	$rac{2A_{_{m}}}{\pi}$	
12.	The Z-transform of a sign	nal is given by $\frac{z^{-1}(1-z^{-4})}{4(1-z^{-1})^2}$. Its	final value is		
	A) 1/4	B) 0	C) 1	D) ∞	
13.		ng a transformation ratio of 0. om the primary to the seconda		kW. The power	
	A) 10 kW	B) 8 kW	C) 2 kW	D) Zero	
14.	 4. Two transformers of identical voltages but of different capacities are operating in parallel. For satisfactory load sharing A) Impedances must be equal B) Per unit impedances must be equal C) Per unit impedances and X/R ratios must be equal D) Impedances and X/R ratios must be equal 				
15.	 15. Distributed winding and short circuit chording employed in AC machine will result in A) Increase in emf and reduction in harmonics B) Reduction in emf and increase in harmonics C) Increase in both emf and harmonics D) Reduction in both emf and harmonics 				
16.	The dc motor which can	provide zero speed regulation	at full load without an	y controller is	
	A) SeriesC) Cumulative compound	d	B) Shunt D) Differential comp	ound	
17.	•	rcuit network with R=2 M Ω cross the capacitor after 2 second	•	ed on to a 10 V	
	A) Zero	B) 3.68 V	C) 6.32 V	D) 10 V	

18.	18. The depth of penetration of wave in a lossy dielectric increases with increasing				
	A) Purely resistiveB) Purely inductiveC) Complex with a capaD) Complex with inductive	-			
19.	19. If two identical lossless series motors connected in series across a dc supply voltage, run at speeds of N ₁ and N ₂ then ratio of their output powers will be				
	A) $N_1^2: N_2^2$	B) 1:1	C) $N_1: N_2$	D) $N_2 : N_1$	
20.	20. A 250 kVA, 230/115 V, 50 Hz transformer has r_1 =0.12 Ω , r_2 =0.04 Ω , X_1 =0.2 Ω and X_2 =0.05 Ω . What is transformer loading which will make the primary induced emf equal in magnitude to the primary terminal voltage when the transformer is carrying the full load current? Neglect magnetizing current.				
	A) 15.57 kW	B) 16.57 kW	C) 17.57 kW	D) 19.57 kW	
21.	21. A 100 KVA, 400/200 V single phase transformer with 10% impedance draws a steady state short circuit line current of				
	A) 50 A	B) 150 A	C) 250 A	D) 350 A	
22.	The ratio of reset to pick	up current for an induction cu	p relay is approximate	ly	
	A) 0.99	B) 1.0	C) 0.75	D) 1.25	
23.	In protection of transform	ners, harmonic restraint is use	d to guard against		
	A) Magnetizing inrush cC) Lightning	urrent	B) Unbalanced operation D) Switching over voltages		
24.	24. A 50 Hz , 320 km lossless line has sending end voltage of 1.0 pu. The receiving end voltage at no-load is				
	A) 1.1 p.u	B) 1.088 p.u	C) 1.116 p.u	D) 1.111 p.u	
25.	25. A transformer rated for 500 kVA, 11 kV/0.4 kV has an impedance at 10% connected to an infinite bus. The fault level of the transformer is				
	A) 500 kVA	B) 5000 kVA	C) 500*1.732 kVA	D) 10000 kVA	
26.	The critical clearing time	of fault in a power systems is	s related to		
	A) Reactive power limit		B) Short circuit limit		
	C) Steady state stability l	imit	D) Transient stability	limit	

	A) Maintain voltage at the rated voltage level B) Maintain frequency exactly at 50 Hz C) Maintain a spinning reserve margin at all times D) Maintains the synchronous between machines and on external ties 28. A distribution station has a peak load of 3000 kW and total annual energy of 10 ⁷ kWh. The					
	peak power loss is 220 kV		C) 0.325	D) 0.356		
29.	 A) 0.215 B) 0.285 C) 0.325 D) 0.356 29. A surge voltage rising at 100 kV/μsec travels along a loss-less open circuited transmission line. It takes 10 μ sec to reach the open end. The reflected wave from the open end, will be rising at 					
	· ·	•	C) 1000 kV/µs	•		
30.	A plant has the following	g transfer function $G(s) = \frac{1}{(s^2 + s^2)^2}$	$\frac{1}{0.2s+1}$, For a step inp	out it is required		
		o within 2% of its final value.				
	A) 20 sec	B) 40 sec	C) 35 sec	D) 45 sec		
31.	A system has transfer fun	action $\frac{1-s}{(1+s)}$ it is called				
	A) Low pass filterC) All pass filter		B) High pass filterD) None of these			
32.	A system is represented b	by $\frac{dy}{dt} + 2y = 4tu(t)$. The ramp co	omponent in the forced	response will be		
	A) $tu(t)$	B) $2tu(t)$	C) $3tu(t)$	D) $4t u(t)$		
33.	Sinusoidal oscillators are					
	A) StableC) Marginally stable		B) Unstable D) Conditionally stab	le		
34.	The number of roots of s	$^{3} + 5s^{2} + 7s + 3 = 0$ in the right ha	alf of s-plane is			
	A) 0	B) 1	C) 2	D) 3		
35.	The phase margin of a sy	stem with open loop transfer f	function $G(s)H(s) = \frac{1}{(1+s)^{n-1}}$	$\frac{1-s)}{s(2+s)}$ is		
	A) 0^{0}	B) 63.4 ⁰	C) 90^{0}	D) Infinite		
36.	36. The gain margin of the transfer function $G(s) = \frac{0.75s}{(1+s)(2+s)}$ is					
	A) 4 dB	B) 8 dB	C) 12 dB	D) 16 dB		

37.	7. A meter has a full scale deflection of 90° at a current of 1A. The response of the meter is square law. Assuming spring control, the current for a deflection at 45° will be				
	A) 0.25 A	B) 0.50 A	C) 0.67 A	D) 0.707 A	
38.	A 1000 ohms/V meter is	used to measure a resistance	e on 150 V scale. The m	neter resistance is	
	Α) 150 kΩ	B) 1 kΩ	C) 6.67 Ω	D) 0.001 Ω	
39.	• •	eter operating on 230 V and tions is 400. The power factor		1940 revolutions.	
	A) 1	B) 0.8	C) 0.7	D) 0.6	
40	Which of the following r	neter is most suitable for me	asuring radio frequency	currents?	
	A) Moving coil meterC) Thermocouple meter		B) Moving iron met D) VTVM	er	
41.	A digital voltmeter meas	ures			
	A) Peak value	B) Peak-to-peak value	C) Rms value	D) Average value	
42	. Which of the meter is sui	table for measurement of 10	mV at 50 Hz?		
	A) Moving iron type		B) VTVM		
	C) C.R.O.		D) Electrostatic volt	meter	
43	. To obtain very high inpu	t and output impedances in a	a feedback amplifier, th	e topology must be	
	A) Voltage- series		B) Current-series		
	C) Voltage-shunt		D) Current-shunt		
44.	A two stage amplifier wi	th negative feedback has an	overshoot when dampi	ng factor k is	
	A) Less than unity		B) Greater than unit	у	
	C) Zero		D) Negative		
45	The MOSFET switch in	its on-state may be considered	ed equivalent to		
	A) Resistor	B) Inductor	C) Capacitor	D) Battery	
46	Class AB operation is of	ten used in power(large sign	al) amplifiers in order t	0	
	A) Get maximum efficie	ency	B) Remove even har	rmonics	
	C) Overcome a cross-ove	er distortion	D) Reduce collector	dissipation	
47	Which of the following o	an be used to change data fr	om special code for ten	nporal code?	
	A) Shift registers		B) Counters		
	C) A/D converters		D) Combinational c	ircuits	

48.	In	time	division	multip	lexing

- A) Time is doubled between bits of a byte
- B) Time slicing at CPU level takes place
- C) Total time available in channel is divided between several users and each users is allotted a time slice
- D) None of these
- 49. The inverter is used to control the speed of three phase induction motor
 - A) By varying the frequency of supply
 - B) By varying the voltage frequency
 - C) By varying the resistance of stator winding
 - D) By varying none of the above
- 50. A single phase full wave midpoint thyristor converter uses a 230/200 V transformer with centre tap on secondary side. The P.I.V per thyristor is

A) 100 V

B) 141.4 V

C) 200 V

D) 282.8 V

X-X-X

Electronics & Communication Engineering(Ph.D.)

- 1. A silicon bar is doped with donor impurities $N_D = 2.25 \times 10^{15}$ atoms / cm³. Given the intrinsic carrier concentration of silicon at T = 300 K is $n_i = 1.5 \times 10^{10} \text{ cm}^{-3}$. Assuming complete impurity ionization, the equilibrium electron and hole concentrations are

 - A) $n_0 = 1.5 \times 10^{16} \text{ cm}^{-3}$, $p_0 = 1.5 \times 10^5 \text{ cm}^{-3}$ B) $n_0 = 1.5 \times 10^{10} \text{ cm}^{-3}$, $p_0 = 1.5 \times 10^{15} \text{ cm}^{-3}$ C) $n_0 = 2.25 \times 10^{15} \text{ cm}^{-3}$, $p_0 = 1.5 \times 10^{10} \text{ cm}^{-3}$ D) $n_0 = 2.25 \times 10^{15} \text{ cm}^{-3}$, $p_0 = 1 \times 10^5 \text{ cm}^{-3}$
- 2. In a P⁺ n junction diode under reverse bias the magnitude of electric field is maximum at
 - A) The edge of the depletion region on the P side.
 - B) The edge of the depletion region on the n side.
 - C) The P⁺ n junction
 - D) The centre of the depletion region on the n-side
- 3. The Early-effect in a bipolar junction transistor is caused by
 - A) Fast-turn-on
 - B) Fast-turn-off
 - Large collector-base reverse bias C)
 - D) Large emitter-base forward bias
- 4. Consider the following two statements about the internal conditions in an n-channel MOSFET operating in the active region.

S₁: The inversion charge decreases from source to drain.

S₂: The channel potential increases from source to drain which of the following is correct.

- A) Only S₂ is true
- B) Both S_1 and S_2 are false
- Both S_1 and S_2 are true, but S_2 is not a reason for S_1
- Both S_1 and S_2 are true, and S_2 is a reason for S_1
- 5. In IC technology, dry oxidation (using dry oxygen) as compared to wet oxidation (using steam orwater vapor) produces
 - A) superior quality oxide with a higher growth rate
 - B) inferior quality oxide with a higher growth rate
 - inferior quality oxide with a lower growth rate
 - superior quality oxide with a lower growth rate D)
- 6. The root locus plot for a system is given in Fig. 1. The open loop transfer function corresponding to this plot is given by

A)
$$G(s)H(s) = k \frac{s(s+1)}{(s+2)(s+3)}$$

B)
$$G(s)H(s) = k \frac{s(s+1)}{s(s+2)(s+3)^2}$$

C)
$$G(s)H(s) = k \frac{1}{s(s-1)(s+2)(s+3)}$$

D)
$$G(s)H(s) = k \frac{s(s+1)}{s(s+2)(s+3)}$$

Fig. 1

- 7. Consider a unity-gain feedback control system whose open-loop transfer function is $G(s) = \frac{as+1}{s^2}$. With the value of "a" set for a phase-margin of $\pi/4$, the value of unitimpulseresponse of the open-loop system at t = 1 second is equal to
 - A) 3.40

- B) 2.40
- C) 1.84
- D) 1.74
- 8. The transfer function Y(s)/U(s) of a system described by the state equations

$$\dot{x}(t) = -2x(t) + 2u(t)$$

$$y(t) = 0.5x(t)$$
 is

A)
$$\frac{0.5}{(s-2)}$$

$$\frac{1}{(s-2)} \qquad \frac{0.5}{(s+2)} \qquad \frac{1}{(s+2)}$$

$$\frac{0.5}{(s+2)}$$

$$\frac{1}{(s+2)}$$

- 9. For a second order system, damping ratio (ξ), is $0 < \xi < 1$, then the roots of the characteristic polynomial are
 - A) Real but not equal
 - B) Real and equal
 - C) Complex conjugates
 - D) Imaginary
- 10. Negative feedback in a closed loop control system DOES NOT
 - A) Reduce the overall gain
 - B) Reduce bandwidth
 - C) Improve disturbance rejection
 - D) Reduce sensitivity to parameter variation
- 11. The circuit shown in Fig. 2 is best described as a
 - A) Bridge rectifier
 - B) Ring modulator
 - C) Frequency discriminatory
 - D) Voltage doubler

Fig. 2

- 12. In a bipolar transistor at room temperature, if the emitter current is doubled the voltage across its base-emitter junction
 - A) Doubles
 - B) Halves
 - C) Increase by about 20 mV
 - D) Decrease by about 20 mv

- 13. For an n-channel MOSFET and its transfer curve shown in Fig. 3, the thresholdvoltage is
 - A) 1 V and the device is in active region.
 - B) -1 V and the device is in saturation region.
 - C) 1 V and the device is in saturation region.
 - D) -1 V and the device is in active region

Fig. 3

- 14. In CMOS technology, shallow P-well or N-well regions can be formed using
 - A) low pressure chemical vapour deposition
 - B) low energy sputtering
 - C) low temperature dry oxidation
 - D) low energy ion-implantation
- 15. The circuit shown in Fig. 4 implements a filter between the input current i_1 and the output voltage v_o . Assume that the op-amp is ideal. The filter implemented is a
 - A) low pass filter
 - B) band pass filter
 - C) band stop filter
 - D) high pass filter

Fig. 4

- 16. A good buffer has
 - A) Low input impedance and low output impedance
 - B) Low input impedance and high output impedance
 - C) High input impedance and low output impedance
 - D) High input impedance and high output impedance
- 17. A new Binary Coded Pentary (BCP) number system is proposed in which everydigit of a base-5 number is represented by its corresponding 3-bit binary code. For example, the base-5 number 24 will be represented by its BCP code 010100. In this numbering system, the BCP code 100010011001 corresponds to the following number in base-5 system
 - A) 423

- B) 1324
- C) 2201
- D) 4231

18. In the circuit shown in Fig. 5, the Norton equivalent current in amperes with respect to the terminals P and Q is

- A) 6.4 j4.8
- B) 6.56 j7.87
- C) 10 + j0
- D) 16 + i0

Fig. 5

19. The y-parameters of a 2-port network are

$$[y] = \begin{bmatrix} 5 & 3 \\ 1 & 2 \end{bmatrix} S$$

A resistor of 1 ohm is connected across as shown in Fig. 6. The new y-parameter would be

- A) $\begin{bmatrix} 6 & 4 \\ 2 & 3 \end{bmatrix} S$
- B) $\begin{bmatrix} 6 & 2 \\ 0 & 3 \end{bmatrix} S$
- C) $\begin{bmatrix} 5 & 4 \\ 2 & 2 \end{bmatrix} S$
- D) $\begin{bmatrix} 4 & 4 \\ 2 & 1 \end{bmatrix}$

Fig. 6

20. The divergence of the vector field $\vec{A} = x\hat{a}_x + y\hat{a}_y + z\hat{a}_z$ is

A) 0

- B) 1/3
- C) 1

D) 3

21. Which one of the following statements is NOT TRUE for a continuous time causal and stable LTI system?

- A) All the poles of the system must lie on the left side of the $j\omega$ axis
- B) Zeros of the system can lie anywhere in the s-plane
- C) All the poles must lie within |s| = 1
- D) All the roots of the characteristic equation must be located on the left side of the $j\omega$ axis

22. The Boolean function f implemented in Fig. 7 using two input multiplexers is

- A) $A\overline{B}C + AB\overline{C}$
- B) $ABC + A\overline{B}\overline{C}$
- C) $\overline{A}BC + \overline{A}\overline{B}\overline{C}$
- D) $\overline{ABC} + \overline{ABC}$

Fig. 7

23. The output Y of a 2-bit comparator is logic 1 whenever the 2-bit input A is greater than the 2-bit input B. The number of combinations for which the output is logic 1, is

A) 4

- B) 6
- C) 8
- D) 10

- 24. In a baseband communications link, frequencies upto 3500 Hz are used for signaling. Using a raised cosine pulse with 75% excess bandwidth and for no inter-symbol interference, the maximum possible signaling rate in symbols per second is
 - A) 1750

- B) 2625
- C) 4000
- D) 5250
- 25. The electric field of a uniform plane electromagnetic wave in free space, along the positive x direction, is given by $\vec{E} = 10(\hat{a}_y + j\hat{a}_z)e^{-j25x}$. The frequency and polarization of the wave, respectively, are
 - A) 1.2 GHz and left circular

B) 4 Hz and left circular

C) 1.2 GHz and right circular

- D) 4 Hz and right circular
- 26. In the Fig. 8, C_1 and C_2 are ideal capacitors. C_1 has been charged to 12 V before the ideal switch S is closed at t = 0. The current i(t) for all t is
 - A) zero
 - B) a step function
 - C) an exponentially decaying function
 - D) an impulse function

Fig. 8

27. With initial condition x(1) = 0.5, the solution of the differential equation.

$$t\frac{dx}{dt} + x = t \text{ is}$$

A)
$$x = t - \frac{1}{2}$$

B)
$$x = t^2 - \frac{1}{2}$$

C)
$$x = \frac{t^2}{2}$$

D)
$$x = \frac{t}{2}$$

- 28. A source alphabet consists of N symbols with the probability of the first two symbols being the same. A source encoder increases the probability of the first symbol by a small amount ϵ and decreases that of the second by ϵ . After encoding, the entropy of the source
 - A) Increases

B) Remains the same

C) Increases only if N = 2

- D) Decreases
- 29. If $x[n] = (1/3)^{|n|} (1/2)^n u[n]$, then the region of convergence (ROC) of its Z-transform in the Z-plane will be

A)
$$\frac{1}{3} < |z| < 3$$

$$\frac{1}{3} < \mid z \mid < \frac{1}{2}$$

$$\frac{1}{2} < |z| < 3$$

$$\frac{1}{3} < |z|$$

30	-	ndom variables X and Y max[X, Y] is less than 1/2	are uniformly distributed 2 is	in the interval [1, 1].
	A) 3/4	B) 9/16	C)1/4	D) 2/3
31	to a 200 Ω section.	-	edance of 100Ω is used to lone both at 429 MHz and	
	A) 82.5 cm	B) 1.05 m	C) 1.58 m	D) 1.75 m
32	2. The input $x(t)$ and o	utput $y(t)$ of a system are	related as $y(t) = \int_{-\infty}^{t} x(\tau) \cos t$	$\cos(3\tau)d\tau$. The system
	is		•	
	A) Time-invari		·	ot time-invariant
	C) Time-invaria	ant and not stable	D) Not time-inv	variant and not stable
33	3. The Fourier transfor	m of a signal h(t) is H(jω)	$= (2 \cos \omega) (\sin 2\omega)/\omega$. T	he value of h(0) is
	A) ½	B) ½	C) 1	D) 2
34	A. A PLA can be			
	A) As a microp	processor	B) As a dynami	c memory
	C) To realize a	sequential logic	D) To realize a	combinational logic
25	The minimum numb	or of MOS transistors rad	uired to make a dynamic I	DAM call is
3.	A) 1	B) 2	C) 3	D) 4
36	6. The gate delay of ar because	NMOS inverter is domi	nated by charge time ratho	er than discharge time
	A) The driver transi	stor has a larger threshold	l voltage than the load tran	ısistor
	*	· ·	rrents compared to the loa	
	C) The load transistD) None of the above		compared to the driver tra	ansistor
37	7. Commercially availa	able ECL gates use two gr	ound lines and one negati	ve supply in order to
	A) Reduce power di	issipation		
	B) Increase fan-out			
	C) Reduce loading (and a trianing about	
	D) Eliminate the eff	ect of power line glitches	or the biasing circuit	
38	3. The advantage of us	ing a dual slope ADC in a	a digital voltmeter is that	
	A) Its conversion tin		B) Its accuracy	· ·
	C) It gives output in	a BCD format	D) It does not re	equire a comparator
39	O. The resolution of a digital output of the	•	0.5 Volts. For an analog in	nput of 6.6 Volts, the
	A) 1011	B) 1101	C) 1100	D) 1110
	,	*	,	,

C	O. A microprocessor with a 16-bit address bus is used in a linear memory selection configuration (i.e. Address bus lines are directly used as chip selects of memory chips) with 4 memory chips. The maximum addressable memory space is			
	A) 64k	B) 16k	C) 8k	D) 4k
41. I	In an 8085 microp	rocessor system, the RST	Γ instruction will cause an interr	upt
I	B) Only if a bit in	rrupt service routine is not the interrupt mask is mapt have been enabled by pove	ade 0	
	=	cessor based system use as of the last byte in this r	s 4K×8 RAM, whose starting a memory?	address is AA00H.
A	A) AFFFH	B) B9FFH	C) BFFFH	D) A9FFH
		of memory accesses in ecutes the instruction LD	evolved (inclusive of the op-cod) A 2003 is	de fetch) when an
A	A) 1	B) 2	C) 3	D) 4
6 6 6 6 6 6 6	ADDRESS INSTR (HEX) 5010: 5013: 5015: 5016: 5017: 5018: From which addre A) 6019	LXIH, 8A79H MOV A, L ADD H DAA MOV H, A PCHL ss will the next instruction B) 0379		D) None of these
I (A) Steady state va B) Initial value of	eorem is used to find the alue of the system output the system output aviour of the system outp		
46. 7	Γhe amplitude spe	ectrum of a Gaussian puls	se is	
	A) Uniform C) Gaussian		B) A sine function D) An impulse fun	ction
47. c	Compression in Po	CM refers to relative con	npensation of	
	A) Higher signal a C) Lower signal fr	•	B) Lower signal ar D) Higher signal fr	•

- 48. The electric field component of a time harmonic plane EM wave traveling in anon-magnetic lossless dielectric medium has amplitude of 1 V/m. If the relative permittivity of the medium is 4, the magnitude of the time-average power density vector (in W/m^2) is
 - A) $1/30\pi$
- B) $1/60\pi$

- C) $1/120\pi$
- D) 1/240π
- 49. An antenna when radiating has a highly directional radiation pattern. When the antenna is receiving its radiation pattern
 - A) Is more directive

B) Is less directive

C) Is the same

- D) Exhibits no directivity at all
- 50. In the following graph (Fig. 9), the number of trees (P) and the number of cut-sets (Q) are
 - A) P = 2, Q = 2
 - B) P = 2, Q = 6
 - C) P = 4, Q = 6
 - D) P = 4, Q = 10

Fig. 9

x-x-x

Information Technology (1076)				
1	Context Sensitive Grammars are accepted by			
	A) Deterministic Finite Automata B) Non-deterministic Finite Automata			
	C) Push Down Automata			
	D) Linear Bounded Automata			
2	Context Free Languages are not closed under			
	A) Union			
	B) Intersection			
	C) Homomorphism			
	D) Substitution			
3	According to Arden's theorem, the solution to R=Q+RP is			
	A) R=QP*			
	B) R=P*Q			
	C) P=RQ*			
	D) P=Q*R			
4	Bottom-Up parsing is also known as			
	A) Recursive Predictive Parsing			
	B) LL Parsing			
	C) Shift Reduce Parsing			
	D) Non-Recursive Predictive Parsing			
5	The application of finite automata include			
	A) lexical analyzers			
	B) query optimization			
	C) parsers			
6	D) operating systems Which of the following information is not included in Process Control Block			
	A) Program Counter			
	B) Critical Section C) Accounting Information			
	D) CPU-scheduling information			
7	Which of the following statement is not true			
	A) Register values are not shared across threads in a multithreaded process			
	B) Heap memory is shared across threads in a multithreaded process			
	C) Global variables are shared across threads in a multithreaded process			
	D) Stack memory is shared across threads in a multithreaded process			
8	Which of the following pair of scheduling algorithms could result in starvation			
	A) First-come, first-served and Round Robin			
	B) Multilevel Feedback-Queue Scheduling and Round Robin			
	C) Shortest Job First and Priority-based			
	D) First-come, first-served and Multilevel Feedback-Queue Scheduling			
9	Bounded – Buffer problem is also known as			
	A) Producer-Consumer problem			
	B) Dining – Philosophers problem			
	C) Readers – Writers problem			
	D) Sleeping Barber problem			

10	Consider a disk queue with requests for I/O to blocks on cylinders:						
	98 183 37 122 14 124 65 67						
	Considering FCFS scheduling, what is the total number of head movements if the disk head is initially at 53						
	the disk head is initially at 33						
	A) 600 B) 620 C) 630 D) 640						
11	Address Resolut	on Protocol (AF	RP) is used				
	A) to map IP network addresses to the hardware addresses used by a data link						
	protocol						
	′ 1		•	protocol to the physical layer			
	·			protocol to the transport layer			
	protocol	ietwork address	es to the addre	sses used by a transport layer			
12	The default subn	et mask for class	s A networks is				
	A) 255.255.255.0)					
	B) 255.0.0.0	,					
	C) 255.255.0.0						
	D) 255.255.255.2						
13	Which of the following	lowing is the pri	me task of Data	Link Layer			
	A) Synchronizati						
	B) Conversion of						
	C) Controlling C D) Framing	onnection					
14	EDGE stands for	•					
	A) Enhanced Data GPS Evolution B) Enhanced Data Global Evolution						
	C) Enhanced Data rates for GSM Evolution						
	D) Enhanced Data rates for Global Evolution						
15	Piggybacking is the technique of						
	A) temporarily d	elaying outgoing	g acknowledgem	ents so that they can be hooked			
		outgoing data fr					
	B) synchronizin packets out o		transmitter to e	ensure that receiver never gets			
	_		network by ser	nding control signals in packets			
	along with ou		J 3 -1	5			
	D) keeping multi	•					
16				of elements, the insertion of an			
	element e can be	performed by w	men of the follo	wing operation			
	A) queue.elemen	t[queue.rear]=	e;				
	B) queue.elemen	-					
	C) queue.elemen						
17	D) queue.elemen			ked lists over arrays			
' '		•	_	nou mon over amays			
	A) insertion opera	•					
	C) searching ope						
	D) linked lists m						
			<u>-</u>				

18	Which of the following types of tree has the leaves at the same level
	A) AVL tree
	B) Expression tree
	C) B-tree
	D) Binary tree
19	The postfix notation of expression $(A + B) * C - (D - E) * (F + G)$ is
	A) AB*C-DE-FG+*-
	B) AB+C-D*EFG+*
	C) AB+C*D-EFG+* D) AB+C*DE-FG+*-
20	If $4(\log_9 3) + 9(\log_2 4) = 10(\log_x 81)$, then x is
20	
	A) 9 B) 7
	C) 5
	D) 11
21	In ER modelling, total participation is also called
	A) structural dependency
	B) existence dependency
	C) uniqueness constraint
	D) entity constraint
22	Which of the following relational algebraic operation produces a new relation
	with only some of the attributes of a relation, and removes duplicate tuples
	A) CATTESIAN PRODUCT
	B) SELECT
	C) PROJECT
	D) DIVISION
23	Which of the following is pseudotransitive rule
	A) If $X \rightarrow Y$ and $WY \rightarrow Z$ then $WX \rightarrow Z$
	B) If X \rightarrow Y then XZ \rightarrow YZ
	C) If $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$ D) If $X \rightarrow Y$ and $X \rightarrow Z$ then $X \rightarrow YZ$
24	Join selection factor
	A) is the fraction of records in one file that will be joined with records in the
	other file with respect to an equijoin condition with another file
	B) is the fraction of records produced in inner join to the records produced in
	outer join
	C) is the average number of records that will be produced as a result of join operations
	D) is the maximum number of records that will be produced as a result of join
	operations
25	In which of the following variation of 2PL, a transaction locks all the items it
	accesses before it begins execution, by predeclaring its read-set and write-set
	A) Basic 2PL
	B) Rigorous 2PL
	C) Strict 2PL
	D) Conservative 2PL

26	Which of the following is not a structural diagram in UML				
	A) Class Diagram				
	B) Sequence Diagra	am			
	C) Component Diagram				
	D) Deployment Dia				
27	A program module M calls two sub-modules M1 and M2. M1 can fail 30% times				
	and M2 can fail 20% times. The program module M can fail				
		-			
	A) 60%	B) 30%	C) 44%	D) 50%	
28	Pick the odd one ou	ıt			
	A) Basis Path Testi	nα			
	B) Equivalent Partir	-			
	C) Cause Effect Gra				
	D) Boundary Value				
	D) Boundary varue	resums			
29	In CMM, which of	the following are	Level 5 KPAs		
			nd Organization Pro	cess Definition	
	B) Configuration M	_	_	cess Definition	
	C) Training Program		ž –		
			hange Management		
30			rable kind of cohesion		
	A) Sequential Cohe				
	B) Functional Cohe				
	C) Procedural Cohe				
31	D) Logical Cohesion The worst case and average case performance of Quicksort algorithm is				
31				ort argorithm is	
	A) O(n ²) and O(n ²) B) O(n ²) and O(log n)				
C) O(n log n) and O(n log n)					
22	D) O(n ²) and O(n lo		.1	C 1 1.1.1	
32		owing represent	s the correct seque	ence of complexities in	
	descending order				
	A) exponential-poly	momial logarith	mic linear		
	B) exponential-poly	_			
	C) polynomial-expo		_		
	D) polynomial-expo				
33				$n = 4T (n/2) + n^2 \text{ as per}$	
	Master Theorem is) for recurrence i	ny ir (m²) i in us per	
	A) $T(n) = \Theta(n^2 \log n^2)$	n)			
	B) $T(n) = \Theta(n^2)$				
	C) $T(n) = \Theta(2^n)$				
	D) $T(n) = \Theta(n \log n)$	n)			
34	Which of the follow	ving represents th	ne expression for mi	nimum number of nodes	
	in a binary tree of d	epth n if the root	is considered at lev	el 0	
		D) 0 ⁿ 1	O 1	$\mathbf{D} \setminus \mathbf{Q}^{\mathbf{D}} \setminus 1$	
	A) n	B) $2^{n}-1$	C) n+1	D) $2^{n}+1$	

35	Which of the following algorithm pair has the same worst-case complexity				
	A) Insertion sort and Merge sort				
	B) Bubble sort and Insertion sort				
	C) Merge sort and Quick sort D) Bubble sort and Merge sort				
36	Which of the following is not a characteristics of RISC architecture				
	A) Variable length instruction format				
	B) Memory access is limited to load and store instructions				
	C) Single cycle instruction execution				
	D) Hardwired rather than micro-programmed				
37	Which of the following type of pipeline conflict is caused by access to memory				
	by two segments at the same time				
	A) Target Conflict				
	B) Data Dependency Conflict				
	C) Branch Conflict				
	D) Resource Conflict				
38	Which of the following statement is not true about Input-Output Processor (IOP)				
	A) IOP is similar to CPU except that it is designed to handle the details of I/O				
	processing D) The IOD connect fetch and execute its even instructions				
	B) The IOP cannot fetch and execute its own instructionsC) The IOP provides a path for transfer of data between peripheral devices and				
	memory unit				
	D) IOP can perform processing tasks like arithmetic, logic, branching and code				
20	translation				
39	The signed-2's complement representation of -7 is				
	A) 11111111 B) 10000111 C) 11111001 D) 11111000				
40	Floating point numbers in a computer are represented by a 10 bit mantissa				
	(including sign bit) and a 6 bit exponent (including sign bit). The approximate value of the maximum number that can be represented is: (assume the mantissa				
	is stored in normalized form)				
4.1	A) 2^{32} B) 2^{64} C) 2^{63} D) 2^{31} In which of the following type of projections, all lines perpendicular to the				
41	projection plane are projected with no change in length				
	projection plane are projected with no change in length				
	A) Isomeric projections				
	B) Cabinet projections (C) Cavalian projections				
	C) Cavalier projections D) Orthogonal projections				
42	Which of the following algorithm does not employ image space approach				
	A) Back face removal				
	B) Depth sort method				
	C) Scan line method				
	D) Depth buffer method				

43	The size of 1280 x 960 image at 240 pixels per inch is
	A) 8/3 x 2 inches
	B) 16/3 x 4 inches
	C) 8/3 x 4 inches
	D) 16/3 x 2 inches
44	The 45 degree anticlockwise rotation of point A (1, 1) is
	A) $(\sqrt{2}, 0)$
	B) $(-\sqrt{2}, \sqrt{2})$
	C) $(-\sqrt{2}, 0)$
	D) $(0, \sqrt{2})$
45	The minimum size of the frame buffer for resolution 800 x 600 with 48 bits per
	pixel is
	A) 3.75 MB
	B) 4.75 MB
	C) 2.75 MB
	D) 1.75MB
46	Which of the following is a data link layer protocol
	A) SMTP
	B) PPP
	C) BGP
	D) ICMP
47	Which of the following statement is true
	A) The hamming distance between 001111 and 010011 is 3.
	B) HDLC is not a bit oriented protocol.
	C) End-to-end connectivity is provided from host-to-host in network layer
48	D) Railway track is an example of simplex In OLTP
48	In OLTP
	A) data comes from various diverse sources compared to OLAP
	B) often complex queries are processed involving aggregations
	C) database design is highly normalized with many tables
49	D) processing speed is slow compared to OLAP Which of the following is a spatial indexing method
47	
	A) I-trees
	B) S-trees
	C) B-trees D) R-trees
50	A cryptographic hash function is a hash function which
	A) takes block of data as input and returns a variable-size string B) takes block of data as input and returns a fixed-size string
	C) takes block of data as input and returns a fixed-size string
	D) takes block of data as input and returns data for input to another hash
	function

Mechanical Engineering (1076)

1.	The property of a material which enables it to resist fracture due to high impact loads is known as					
	A) Elasticity	B) Endurance	C) Strength	D)Toughness		
2.	Plastic deformation results from the following					
	A) Slip	B) Twinning	C) Both	D) None		
3.	When a body slides down an inclined surface, inclined at an angle β , the acceleration 'a' of the body is given by					
	A) a = g	B) $a = g \sin \beta$	C) $a = g \cos \beta$	D) $a = g \tan \beta$		
4.	Longitudinal stress is	n a thin cylinder is				
	A) Equal to the hoop C) Half of the hoop s		B) Twice the hoop st D) One fourth of hoo			
5.	A boiler shell 200 cm diameter and plate thickness 1.5 cm is subjected to internal pressure of 1.5 MN/m, then the hoop stress will be					
	A) 30 MN/m^2	$B) 50 \text{ MN/m}^2$	C) 100 MN/m ²	D) 200 MN/m ²		
6.	A link must be a					
	A) Rigid bodyC) Rigid as well as resistant body		B) Resistant body D) None of these			
7.	In a slider crank chain, the numbers of possible inversions are					
	A) Three	B) Four	C) Five	D) Six		
8.	The type of threads used to transmit power in one direction only is					
	A) Acme	B) Trapezoidal	C) Buttress	D) V thread		
9.	The Coefficient of fluctuation of energy of flywheel is given a $Where \ E_{max} = Maximum \ Kinetic \ energy \ of \ the \ Flywheel \\ E_{min} = Minimum \ Kinetic \ energy \ of \ the \ Flywheel$					
	A) $(E_{max}$ - $E_{min})$ /Work done per cycle C) $(E_{max}$ - $E_{min})$ x Work done per cycle D) $(E_{max} + E_{min})$ /Work done per cycle D) $(E_{max} + E_{min})$ x Work done per cycle					
10.	A fixed gear having 200 teeth is in mesh with another gear having 50 teeth. The two gears connected by an arm. The number of turns made by the smaller gear for one revolut of arm about the centre of bigger gear is					
	A) 2	B) 4	C) 3	D) None of these		
11.	A metric thread of pitch 2mm and thread angle 60° is inspected for its pitch diameter using 3-wire method. The diameter of the best size wire in mm is					
	A) 0.86	B) 1.0	C) 1.15	D) 2.0		

12.		Γwo shafts A and B under pure torsion are of identical length and identical weight and are made of the same material. The shaft A is solid and the shaft B is hollow. We can say that			
	A) Shaft B is better C) Both the shafts a		B) Shaft A is better to D)None of these	than shaft B	
13.	The maximum shear	r stress theory is used f	or		
	A) Brittle materialsC) Plastic materials		B) Ductile materials D) Non-ferrous mate		
14.		is based on		whereas all other failure material	
	A) Elastic strength C) Shear strength		B) Yield strength D) All of these		
15.	In grey cast iron, car A) Cementite	rbon is present in the for B) Free carbon	orm of C) Flakes	D) Spheroids	
16.	Cyaniding is the pro	ocess of			
	A) Dipping steel in cyanide bathB) Reacting steel surface with cyanide saltsC) Adding carbon and nitrogen by heat treatment of steel to increase its surface hardnessD) Obtaining cyanide salts				
17.	Cupola produces following material				
	A) Cast iron	B) Pig iron	C) Wrought iron	D)Malleable iron	
18.	As the shear angle is A) Increases	ncreases, the plastic de B) Decreases	formation of chip C) Remains same	D) None of these	
19.	Cutting forces at the cutting tool can be measured by				
	A) A dynamometer	B) A viscosity meter	r C) A sine bar	D) A combination set	
20.	The clearance angle is provided on the tools with a view to				
	A) Strength the toolB) Shear off the metalC) Facilitate easy flow of chipsD) Prevent the tool from rubbing on work piece				
21.	On a lathe machine, the spindle speed is lowest during				
	A) Taper turning	B) Threading	C) Parting off	D) Knurling	
22.	In oxidizing flame, the inner core attains a temperature of°C				
	A) 2100	B) 2800	C) 3150	D) 3500	

23.	Plastic bottles are manufactured using the process of				
	A) Blow moulding C) Atomizing		B) Injection mouldingD) die casting		
24.	Using the Taylor equation $VT^n = c$, calculate the percentage increase in tool life when the cutting speed is reduced by 50% (n = 0.5 and c = 400)				
	A) 300	B) 400%	C) 100%	D) 50%	
25.	In a rolling process, t	he state of stress of the	e material undergoing	deformation is	
	A) Pure compressionC) Compression and		B) Pure shear D) Tension and shea	r	
26.	The process that imp	proves the machinabilit	ry of steels, but lowers	s the hardness and tensile	
	A) Normalizing	B) Annealing	C) Tempering	D) Hardening	
When the front wheels are not parallel to each other and moved further away at termed as			arther away at the top it is		
	A) Positive camber	B) Negative camber	C) Roll out	D) Roll in	
28.	The dry bulb tempera A) Vertical	ature lines of psychome B) Horizontal	etric chart are C) Inclined	D) Curved	
29.	The inlet value of a f A) 180°	our stroke cycle I.C en B) 125°	gine remains open for C) 235°	nearly D) 200°	
30.	In orthographic proje	ections, the rays are ass	umed to		
	A) Diverge from statC) Be parallel	ion point	B) Converge from station pointD) None of these		
31.		nductivities of k1 ar		of the same thickness and The equivalent thermal	
	A) $k1 + k2$	B) k1.k2	$C)\frac{k1+k2}{k1.k2}$	D) $\frac{2k1.k2}{k1+k2}$	
32.	Waste heat can be effectively used in which one of the following refrigeration systems				
	A) Vapour compressC) Vapour absorption	ion refrigeration cycle refrigeration cycle	B) Air refrigeration of D) Vortex refrigeration	-	
33.	Flaring is performed	accurately by using a			
	A) Ball peen hammer C) Flaring block	r	B) Chisel D) Torch to soften the	ne metal	

34.	A negative loop in the P.V diagram of an I.C engine is due to				
	A) Pre ignition in thC) Pre opening of th	•	· · · · · · · · · · · · · · · · · · ·	B) Suction of air for engineD) High pressure in the cylinder	
35.	A 1 ton capacity water cooler cools water steadily from 35°C to 20°C. The specific heat of water is 4.18 KJ/kg-K. The water flow rate will be nearly.				
	A) 13.33 litre/hr	B) 33.3 litre/hr	C) 200 litre/hr	D) 250 litre/hr	
36.	Which of the follow	ring is a non positive	displacement type of c	compressor	
	A) Reciprocating compressorC) Root blower		B) Centrifugal cor D) Vane type com	•	
37.	The Stefan Boltzman	n law states that			
	Α) Ε α Τ	B) E α T ²	C) E α T ³	D) E α T ⁴	
38.	Streamlines, path lin	es and streak lines ar	e virtually identical for	r	
A) Uniform flow B) Flow for ideal fluids C) Steady flow D) Non uniform flow					
39.	Eutectic reaction for iron- carbon system occurs at				
	A) $600~^{0}$ C	B) 723 ⁰ C	C) 1147 ⁰ C	D) 1490 ⁰ C	
40	The crystal structure of α iron is				
	A) Simple CubicC) Body centered cu	ıbic	B) Face centered cubicD) Close packed hexagonal		
41	To show the internal parts of machine components, the section lines are drawn at angle of				
	A) 45^{0}	B) 0^{0}	C) 60^{0}	D) 90^{0}	
42	Which of the following statements are FALSE about the buoyancy of an object				
	A) The force of buoyancy on a ship is equal to the weight of the water displaced by the ship and its cargo.B) Buoyancy explains why it is easier to lift an object in water than it is in air.C) An object only has buoyancy in air.D) An object only has buoyancy in liquids.				
43	Cavitations in centrifugal pumps can be reduced by				
	A) Reducing the disC) Throttling the dis	•	B) Reducing the s D) Increasing the		
44	The Weber number in dimensionless system is expressed as				
	V = / /=	B) $\frac{V}{\sigma\sqrt{\rho L}}$ tension per unit lengt	C) $\frac{\sigma V}{\sqrt{\rho L}}$ th. (4)	D) $\frac{\sqrt{\sigma/\rho L}}{V}$	

- 45. The heat is absorbed by
 - A) Condenser
- B) Evaporator
- C) Compressor
- D) Thermostat

- 46. Work study includes
 - A) Method study
- B) Motion study
- C) Time study
- D) All of these

- 47. At break even point
 - A) Fixed costs are recovered
- B) Variable costs are recovered
- C) Total costs are recovered
- D) Some costs are recovered
- 48. The time period of a simple pendulum is given by the relation

A)
$$T = 2\Pi \sqrt{\frac{l}{g}}$$

$$\mathbf{B})_T = \Pi \sqrt{\frac{l}{g}}$$

C)
$$T = 2\Pi \sqrt{\frac{g}{l}}$$

D)
$$T = \frac{\Pi}{2} \sqrt{\frac{l}{g}}$$

- 49. Thermocouples are generally used for temperature measurements upto
 - A) 500^{0} C
- B) 1000 °C
- C) $1500 \, {}^{0}$ C
- D) 2000 °C
- 50. The stream function for a two dimensional flow is given by $\psi = 2xy + \text{constant}$. The flow between stream lines at (1, 1) and (2, 2) would be
 - A) 3 units
- B) 5 units
- C) 6 units
- D) 10 units

x-x-x

Mechanical Engineering(Manufacturing Technology) (1076)

1.	Which of the following welding processes is best suited for joining two stainless steel foils of thickness 0.1 mm each?							
	A) MIG	B) TIG	C) Plasma Arc	D) Gas Welding				
2.	In foundry sand,	bentonite is used:						
	A) As a plasticizC) As a refractor		B) For improving surf D) As a binder	Cace finish				
3.	Chaplets are:							
	A) Core projectionC) Core supports		B) Core bindersD) Mould seats to sup	port cores				
4.	A sprue is:							
	B) Used to act as	rol the rate of solidificat s a reservoir of molten rall path of the molten me above	netal					
5.	Blow holes in castings are due to:							
	A) Low permeat	=	B) Very fine sand grain	ins				
	D) High moistur	e content of the sand	D) Any of the above					
6.	The ductility of a material with work hardening:							
	A) Increases		B) Decreases					
	C) Remains unat	ffected	D) Unpredictable					
7.	Which of the following statements is wrong:							
	B) Smaller rakeC) The side cutti		we wear and deformation in to 15 ⁰) increases tool life.	ool.				
8.	Hardness of carb	oon tool steels can be in	creased by alloying with					
	A) Tungsten		B) Nickel					
	C) Chromium ar	nd Vanadium	D) Manganese					
9.	Collapsible tooth	npaste tubes are made b	y process.					
	A) Injection mou	ılding	B) Indirect extrusion					
	C) Direct extrusion D) Impact extrusion							

10.	The factor responsible for the formation of di	scontinuous chips is	
	A) Low cutting speed and small rake angleC) High cutting speed and large rake angle	, , ,	ed and large rake angle ed and small rake angle
11.	In metal cutting operations, shear angle is the	angle made by the sh	ear plane with the
	A) Direction of the tool axisB) Direction of tool travelC) Perpendicular to the direction of the tool aD) Central plane of the workpiece	xis	
12.	Flank wear depends upon the:		
	A) Hardness of the workpiece and tool materiB) Amount and distribution of hard constituenC) Degree of strain hardening in the chipD) All of these	1 0	•
13.	For the same tool life, the maximum material	per minute is remove	d by
	A) Increasing the cutting speedC) Increasing the depth of cut	B) Decreasing the condition D) Increasing the fe	0 1
14.	The correct sequence of the following parame influence on tool life is	eters in order of their	maximum to minimum
	A) Feed rate, depth of cut, cutting speedC) Cutting speed, feed rate, depth of cut	B) Depth of cut, cut D) Feed rate, cutting	ting speed, feed rate g speed, depth of cut
15.	In the relation $VT^n = C$, the value of n for ca	rbide tools is	
	A) 0.1 to 0.2 B) 0.20 to 0.25	C) 0.25 to 0.40	D) 0.40 to 0.55
16.	In oblique cutting system, the chip thickness is	is	
	A) Uniform throughoutC) Maximum at middle	B) Minimum at mid D) Maximum at side	
17.	A 60 tonnes press implies that		
	A) It can handle work weighing upto 60 tonneB) Weight of the press is 60 tonnesC) It can handle die weighing upto 60 tonnesD) It can exert pressure upto 60 tonnes	es	

18.		of the smallest hole that (f_s/f_c) B) 3 Where $t =$ sheet thick	$t(f_s/f_c)$	s given by C) $4 t (f_c/f_s)$	D) 2 t	(f_c/f_s)
		f_c = allowable		ress on the punch		
19.	In pie	rcing and punching oper	ations, the angle	of shear is provided	l on	
	A) Di C) Ha	e alf on die and half on pur	nch	B) Punch D) May be provided	d anywhei	·e
20.	The a	lloying element which ca	an replace tungs	ten in high speed ste	els is	
	A) Ni	ckel	B) Silicon	C) Molybde	num	D) Cobalt
21. T	The ma	chining of titanium is di	fficult due to			
	A)	High thermal conductiv	rity of titanium			
	B)	Chemical reaction between	een tool and wo	rk		
	C)	Low tool-chip contact a	nrea			
	D)	None of these				
22. T	The dif	ferent spindle speeds on	a lathe form			
	A)	Arithmetical progression	n			
	B)	Geometrical progressio	n			
	C)	Harmonical progression	1			
	D)	Any one of these				
23. I	n hot n	nachining, tool is made o	of			
	A)	Tungsten carbide				
	B)	Brass or copper				
	C)	Diamond				
	D)	Stainless steel				
24. (Grindin	g wheels should be teste	ed for balance			
	A)	Only at the time of man	ufacture			
	B)	Before starting the grine	ding operation			
	C)	At the end of grinding of	operation			
	D)	Occasionally				

25.	Trepan	ning is	an c	perat	ion of	
	A \	N / - 1-: .			-1	

- A) Making a cone-shaped enlargement of the end of a hole
- B) Smoothing and squaring the surface around a hole
- C) Sizing and finishing a small diameter hole
- D) Producing a hole by removing metal along the circumference of a hollow cutting tool
- **26.** The factor responsible for the formation of continuous chips with built up edge is
 - A) Low cutting speed and large rake angle
 - B) Low cutting speed and small rake angle
 - C) High cutting speed and large rake angle
 - D) High cutting speed and small rake angle
- **27.** The angle on which the strength of the tool depends is
 - A) Rake angle
 - B) Cutting angle
 - C) Clearance angle
 - D) Lip angle
- 28. In metal machining, the work-tool contact zone is a zone where heat is generated due to
 - A). Plastic deformation of metal
 - B). Burnishing friction
 - C). Friction between the moving chip and the tool face
 - D). None of the above
- **29**. Threading is an operation of
 - A) Smoothing and squaring the surface around a hole
 - B) Sizing and finishing a small diameter hole
 - C) Producing a hole by removing metal along the circumference of a hollow cutting tool
 - D) Cutting helical grooves on the external cylindrical surface

30. The har	dness of a grinding wheel is specified by
A)	Brinell hardness number
B)	Rockwell hardness number
C)	Vickers pyramid number
D)	Letter of alphabet
31. Down i	nilling is also called
A)	Conventional milling
B)	Climb milling
C)	End milling
D)	Face milling
32. The typ	be of tool used on lathe, shaper and planer is
A)	Single point cutting tool
B)	Two point cutting tool
C)	Three point cutting tool
D)	Multi-point cutting tool
	ation between tool life (T) and cutting speed (V) is $VT^n = \text{Constant}$. In this relation, the f n depends upon
A)	Work material
B)	Tool material
C)	Working conditions
D)	Type of chip produced
mm/rev	bit of 20 mm diameter rotating at 500r.p.m. with a feed rate of 0.2 volution is used to drill a through-hole in a mild steel plate 20 mm thickness. oth of cut in this drilling operation will be:
A)	0.2 mm
B)	10 mm
C)	20 mm
D)	100 mm

35.In Electrical o	lischarge machining, the ten	nperature developed is of t	he order of:
A) 2000^{0} C	B) 6000^{0} C	C) 10000^{0} C	D) 14000^{0} C
36. In Electron b A) Vacuum o C) Electrolyt		is held in B) Dielectric medi D)None of these	ium
37. In plasma arc	e welding, the maximum ten	nperature is of the order of	,
A) 1800^{0} C	B) 2000 ⁰ C	C) 2800 ⁰ C	D) 3500°C
38. Which of the	following process is based	on Faradays law of Electro	olysis?
A) Electron b	beam Machining	B) Laser beam ma	chining
C) Electrical	discharge Machining	D)Electrochemica	l Machining
current used	square hole of dimension 5 I is 5000 A, Atomic weight stant is 96500 coulomb. The	nt of copper is 63 and va	alency of dissolution is 1.
A) 0.326	B)3.26	C)3150	D)315000
40. Match the co	rrect combination for follow	ving metal working proces	ses:
	Processes	Associated state of stres	SS
	P : Blanking	1. Tension	
	Q : Stretch Forming	2. Compression 3. Shear	
	R : Coining S : Deep Drawing	4. Tension and compress	ion
	S. Deep Bluwing	5. Tension and shear	
A) P-2, Q-C) P-5, Q-4	1, R-3, S-4 4, R-3, S-1	B) P-3, Q-4, R-1, D) P-3, Q-1, R-2,	
	ength of a sheet metal is 300 mm diameter from a 1.5 mm		required to produce a
A) 45 KN	B) 70 KN	C) 141 KN	D) 3500 KN
42. In a rolling p	rocess, the state of stress of	the material undergoing de	eformation is
A) Pure com	pression	B) Pure shear	
	ion and shear	D) Tension and sh	ear
, 1		(6)	

- **43.** In a rolling process, sheet of 25 mm thickness is rolled to 20 mm thickness. Roll is of diameter 600 mm and it rotates at 100 rpm. The roll strip contact length will be:
 - A) 5 mm
- B) 39 mm
- C) 78 mm
- D) 120 mm

44. Match the items in columns I and II.

Column I	Column II
P) Wrinkling	1) Yield point elongation
Q) Orange peel	2) Anisotropy
R) Stretcher strains	3) Large grain size
S) Earing	4) Insufficient blank holding force
	5) Fine grain size
	6) Excessive blank holding force

A) P-6 Q-3 R-1 S-2

B) P-4 Q-5 R-6 S-1

C) P-2 Q-5 R-3 S-4

- D) P-4 Q-3 R-1 S-2
- **45.** A 4 mm thick sheet is rolled with 300 mm diameter rolls to reduce thickness without any change in its width. The friction coefficient at the work-roll interface is 0.1. The minimum possible thickness of the sheet that can be produced that can be produced in a single pass will be:
 - A) 1.0 mm
- B) 1.5 mm

- C) 2.5 mm
- D) 3.7 mm
- **46.** A 2 mm thick metal sheet is to be bent at an angle of one radian with a bend of 100 mm. If the stretch factor is 0.5, the bend allowance is

- A) 99 mm
- B) 100 mm

- C) 101 mm
- D) 102 mm

47. The	neutral axis of the cross-section a beam	is that	axis at which the bending stress is
A)	Zero	B)	Minimum
C)	Maximum	D)	Infinity
48. Strain e	energy is the		
A)	Energy stored in a body when strained	within	elastic limits
B)	Energy stored in a body when strained	upto tł	ne breaking of a specimen
C)	Maximum strain energy which can be s	stored i	in a body
D)	Proof resilience per unit volume of a m	aterial	
49. A steel induce	bar of 5 mm is heated from 15° C to 40°	°C and	d it is free to expand. The bar Will
A)	No stress		
B)	Shear stress		
C)	Tensile stress		
D)	Compressive stress		
	ess induced in a body, when suddenly lo ne load is applied gradually.	aded, i	is the stress induced when
A)	Equal to		
B)	One-half		
C)	Twice		
D)	Four times		
	<i>x-x-x</i>	•	

Ph. D. Entrance Test – 2016 Subject: Food Technology Paper – I

Important: Please consult your Admit Card/Roll No. slip before filling your Roll Number on the Test Booklet and Answer Sheet.

Roll No.	In Figure	In Words		
O.M.R. Ans	wer Sheet Serial No.			
Signature of Ca	ndidate:	Signature of Invigilator:		
Time: 60 Min	The state of the s	nestions: 50 Maximum Marks: 50 HE BOOKLET UNTIL ASKED TO DO SO.		

INSTRUCTIONS:

- Write your Roll No. on the Questions Booklet and also on the OMR Answer Sheet in the space provided and powhere else.
- Enter the Question Booklet Scrial No. on the OMR. Answer Sheet. Darken the corresponding bubbles with Black Bull Point/Black Gel Pen.
- Do not make any identification mark on the Answer Sheet or Question Booklet.
- Please check that this Question Booklet contains 50 Questions. In case of any discrepancy, inform the Assistant Superintendent within 10 minutes of the start of Test.
- Each question has four alternative answer (A,B,C,D) of which only one is correct. For each question, darken only one bubble (A or B or C or D), whichever you think is the correct answer, on the Answer Sheet with Black Ball Point/Black Gel Pen. There shall be no negative marking for wrong answers.
- If you do not want to answer a question, leave all the bubbles corresponding to that question blank in the Answer Booklet. No marks will be deducted in such cases.
- Darken the bubbles in the OMR Answer Sheet according to the Serial No. of the question given in the Question Booklet.
- 8. If you want to change an already marked answer, crase the shade in the darkened bubble completely.
- For rough work only the blank sheet at the end of the Question Booklet be used.
- 10. The Answer Sheet is designed for computer evaluation. Therefore, if you do not follow the instructions given on the Answer Sheet, it may make evaluation by the computer difficult. Any resultant loss to the candidate on the above account. Le. not following the instructions completely, shall be of the candidate only.
- 11. After the test, hand over the Question Booklet and the Answer Sheet to the Assistant Superintendent on
- 12. In no case the Answer Sheet, the Question Booklet, or its part or any material copied/noted from this Booklet is to be taken out of the examination hall. Any candidate found doing so would be expelled from the examination.
- 13. A candidate who creates disturbance of any kind or changes his/her seat or is found in possession of any paper possibly of any assistant or found giving or receiving assistant or found using any other unfair means during the examination will be expelled from the examination by the Centre Superintendent/Observer whose decision shall be final.
- 14. Communication equipment such as mobile phones, pager, wireless set, scanner, camera or any electronic/digital gadget etc., is not permitted inside the examination half. Use of calculators is not allowed.
- The candidates will not be allowed to leave the Examination Hall/Room before the expiry of the allotted time.

1.	Mo	st preferred material of construction	in food pro	cessing equipments:		
	A)	Stainless steel	B)	High carbon steel		
	C)	Соррет	D)	Aluminium		
2.	The	dimensions of A2×1/2 Can is exp	ressed as:	A Talifa Shiew		
	A)	401×411	B)	603×700		
	C)	301×411	D)	211×411		
3,	The	thermal diffusivity is expressed as				
	A)	m/s	B)	Pa.s		
	(C)	m²/s	D)	Dimensionless number		
4.	Food laws are essential to:					
	(A)	Control food poisoning	B)	Limit the sale of sub standard products		
	()	Promote the health products	D)	All of these		
5.	The	law governing the cream separatio	n in milk is:			
	A)	Newtons law	B)	Bernoullis law		
	C)	Stokes law	D)	Ficks law		
б.	The	unit of viscosity is expressed as:	100			
	A)	Erg	B)	Pa		
	C)	N.s/m²	D)	N.s		
7.	Jelly may be classified as:					
	A)	Newtonian	B)	Solid		
	C)	Viscoelastic	D)	None of these		
8.	Which one of these technologies are useful for removal of microbes only from surfaces of the foods?					
	A)	Infrared heating	B)	Microwaye		
	C)	High pressure processing	D)	UV light		
9.	The SI units of force is:					
	A)	m.kg.s ⁻²	B)	mol.kg.s ⁻¹		
	C)	m2.kg.s ⁻¹	D)	None of these		
10.	The state of the s					
	A)	Diffusion process	B)	Leaching		
	(C)	Centrifugation	D)	Osmosis		
11.	Y =	exp (-k t) is a:				
	A)	Linear equation	B)	Non-linear equation		
	C)	Quadratic equation	D)	Polynomial equation		

		ich	one is not a food packaging mat	B)		Polypropylene
	A)	1	olyethylene	- ID	+	Acetylene
	C)	8	i-axially oriented	1.4 5.5		
3,	China, India, Indonesia, Bangladesh are major producer of					Poultry
İ	A)	IN	Mango	B		10000
1	(C)	T	tubber	D)	Paddy
4.	A 100		al fat is extracted by			
	A)	-	Distillation	В)	Mechanical extraction
	C	1	Rendering	10	0)	None of these
	10		ost heat resistant microorganism	n is		
15.		-		TE	3)	Saccharomyces cerevase
	A		Str. cremoris	- 1))	Clostridium botulinum
	C)	Lactobacillus bulgaricus		10	
16.	Potassium metabisulfite in processed food acts		1000 accs	3)	Preservative	
	A)	Antioxidant		181	Favoring compound
	C)	Color additive		0)	rayoning compa-
17.	1	eci	thin is the by-product of		B)	Wine industry
12.44		()	Sugar industry			Meat industry
	(3)	Oil industry		D)	Weat mousty
18	. 1	Ted	onic test pertains to:		B)	Total soluble solids evaluation
	-	4)	Total solids evaluation		100	The second sections
	1	(C)	Sensory evaluation		D)	Total size s
19		Bul	ging of can is due to		-	Te food product
		A)	H ₂ gas production		B)	Total Children Control of the Contro
		(C)	N2 production		D	CO ₂ production
-	- 1		illard browning is due to			Reaction of amino acid and sugar
1	0.	A)	A STATE OF THE PARTY OF THE PAR		B	
ï	1		E 1 are and amin	o acid	D) All of these
2	1.	WI	uch of the following analytic	cal metho	d5	can be used to distinguish flavo
12	XX.	001	mpounds?		-) Gas chromatography
1		A)	Polarimetry) Hydrometry
1		C)	Spectroscopy		1) Hydromen?
15	22.	C	semical name of pectin is	- town-wi-	1 8	3) Methyl ester of poly-galactouroni
		A	Methoxyl ester of poly-gat	RCIOGIONIC	1	acid
			acid		+	O) Methoxyl ester of glutamic acid
		C	Methyl ester of glutamic acid	4.0	15	75

23.	Caffeine is absent in						
	A)	Tea	B)	Coffee			
	C)	Fresh fruit juice	D)	Cola drinks			
24.	Hea	at sensitive foods should preferably be	processe	ed:			
	A)	Below atmospheric pressure	B)	At atmospheric pressure			
	(C)	Above the atmospheric pressure	D)	None of these			
25.	The	Reynolds number for turbulent fluid f.	low in a	pipe is:			
	A)	Less than 2100	B)	Greater than 2100			
	C)	Greater than 4000	D).	Greater than 10,000			
26.	1	80°C is equal to:					
	A).	156F	B)	166F			
	C)	176P	D)	186F			
27.	One	almospheric pressure is equal to:	-				
	A)	100,135 kPa	B)	101.135 kPa			
	C)	1 kPa	D)	1000 kPa			
28.	Which of the following process results in least residual oil content in oil hearing materials:						
	A)	Ghani	(B)	Expeller			
	(C)	Solvent extraction	10)	Hydraulic press			
29.	Dry	ing takes place only when dry bulb tem	neratur	e of hot air is:			
20	A)	Less than its wet bulb temperature	(B)	Equal to its wet bulb temperature			
	C)	Greater than wet bulb temperature	D)	Zero			
30.	Var	ious properties of air vapour mixture ar	e given	in			
	A)	P-V chart	B)	Hasley's Chart			
	C)	Psychrometric Chart	D)	None of these			
31.	Whi	ich of the following is a non-distilled be	everage:				
	A)	Rum	B)	Whisky			
	C)	Brandy	D)	Вест			
32.	PET	is:					
	A)	Polyethylene terepthalate	B)	Para ethyl toluene			
	C)	Poly ethylene tube	10)	None of the above			
33.	*Yie	ld stress' term is related with	1	The Art and the Art and Art an			
2.700.0	A)	Leaching	B)	Rheology			
	C)	Newtonian fluids	10)	Solids			

4.	Which one of these is a gram positive bacteria? B) Salmonella							
	A)	Pseudomonas		Bacillus				
	C)	Proteus	D) .	DHEITINS				
5.	The SPC per ml of the pasteurized milk should be:							
	A)	Pess than 10000	B)	Less than 20000				
	C)	Less than 30000	D)	Less than 40000				
36.	The current production of wheat in India is approximately:							
	A)	200 million tonnes	В)	300 minion tonnes				
	()	50 million tonnes	D)	95 million tonnes				
37.	C, b	otulinum does not grow in fo	ods having pH be	low:				
50)()	A)	4.0	15)	4.0				
	C)	5.0	D)	5.5				
38.	Parboiting of rice is a:							
	A)	Thermal treatment	B)	Blanching treatment				
	Ĉ)	Pressure treatment	D)	Hydrothermal treatment				
39.								
	A)	1 mPa.s	B)	100 mPa.s				
	(C)	1 MPa.s	D)	100 MPa.s				
40.	The CI units of measurement is:							
-17-	A)	ft, lb, s, °F	B)	cm, g, s, "C				
	(C)	m, kg, s, K	D)	m, kg, s, °C				
41.								
	A)	915 MHz	8)	9150 MHz				
	C)	245 MHz	D)	2450 MHz				
42	The Fifth Andreas construct rate of drying is:							
42			(B)	W4 000				
	A)		D)	1000				
	C)							
43		commended dryer for strawb	and the last of the last	Fluidized bed dryer				
i.	A)	A Production Comment	B)	The state of the s				
	(C)	THE CONTROLL STREET, S	D)	Freeze dryer				
44								
	A)	Fick's law	B)					
	(C)	Fourier's law	D	Charl's law				
				Tr.				
			17					

45	Activation energy is expressed in:						
	A)	kJ/mol	B)	kJ/kg			
	()	Id/L	D)	kJ/mol.K			
46,							
	A)	Destroy all microorganisms	B)	Destroy all pathogens			
	C)	Destroy	D)	Delay growth of microorganisms			
47.	Rat	Ratio of convective heat transfer to heat transfer due to conduction is					
	A)	Reynolds number	B)	Nusselt number			
	(C)	Prandil number	D)	Grasshoff number			
48.	Ratio of motecular diffusivity of momentum to molecular diffusivity of heat is						
	A)	Reynolds number	B)	Nusselt number			
	C)	Prandtl number	D)	Grasshoff number			
49.	Mango is						
	A)	Climacteric fruit	B)	Non-Climacteric fruit			
	C)	Both Climacteric & Non-Climacteric fruit	D)	None of these			
50.	Following gas is responsible for ripening of fruits						
	A)	Oxygen	B)	Carbon dioxide			
	C)	Nitrogen	10)	Ethylene			

 $X \cdot X \cdot X$

Ph. D. Entrance Test - 2016 Subject: Industrial Chemistry Paper - I

Important: Please consult your Admit Card/Roll No. slip before filling your Roll

Roll No.		In Figur	n Figure		In Words	
O.M.R. An	swer S	heet Seri	ial No.			
Signature of Candidate				Signature of Invigilator:		
Time: 60 Minutes Number of Qu DO NOT OPEN THE SEAL ON T				Maximum Marks: 50 NTIL ASKED TO DO SO.		

INSTRUCTIONS:

- 1. Write your Roll No. on the Questions Booklet and also on the OMR Answer Sheet in the space provided
- Enter the Question Booklet Serial No. on the OMR Answer Sheet. Darken the corresponding bubbles with Black Ball Point/Black Gel Pen.
- Do not make any identification mark on the Answer Sheet or Question Booklet.
- Please check that this Question Booklet contains 50 Questions. In case of any discrepancy, inform the Assistant Superintendent within 10 minutes of the start of Test.
- 5. Each question has four alternative answer (A.B.C.D) of which only one is correct. For each question, darken only one bubble (A or B or C or D), whichever you think is the correct answer, on the Answer Sheet with Black Ball Point/Black Gel Pen. There shall be no negative marking for wrong answers.
- 6. If you do not want to answer a question, leave all the bubbles corresponding to that question blank in the Answer Booklet. No marks will be deducted in such cases.
- Darken the bubbles in the OMR Answer Sheet according to the Serial No. of the question given in the Question Booklet.
- If you want to change an already marked answer, crase the shade in the darkened bubble completely
- For rough work only the blank sheet at the end of the Question Booklet be used.
- 10. The Answer Sheet is designed for computer evaluation. Therefore, if you do not follow the instructions given on the Answer Sheet, it may make evaluation by the computer difficult. Any resultant loss to the candidate on the above account, i.e. not following the instructions completely, shall be of the
- 11. After the test, hand over the Question Booklet and the Answer Shert to the Assistant Superintendent on
- 12. In no case the Answer Sheet, the Question Bookles, or its part or any material copied/noted from this Booklet is to be taken out of the examination hall. Any candidate found during so would be expelled from the examination.
- 13. A candidate who creates disturbance of any kind or changes his/her seat or is found in possession of any paper possibly of any assistant or found giving or receiving assistant or found using any other unfair means during the examination will be expelled from the examination by the Centre Superintendent/Observer whose decision shall be final.
- 14. Communication equipment such as mobile phones, pager, wireless set, scanner, camera or any electronic/digital gadget etc., is not permitted inside the examination hall. Use of calculators is not
- 15. The candidates will not be allowed to leave the Examination Half-Room before the expiry of the allotted time.

(1076)

	CAR See Control of the Control of th
Q.I	Which one of the following is incombustible?
A	H ₂
B)	CCI ₄
C)	C ₂ H ₂
D)	S
Q.2	The following type of bonding is strongly directional in solids.
A)	Vander Waal's
B)	Ionic
C	Metallic
D)	Covalant
Q.3.	Evaporative cooling process employs a combination of cooling and humidification in which the
A)	sensible heat is added.
B)	sensible heat is removed and the latent heat is added.
C	latent heat is removed.
D)	sensible heat is added and latent heat is removed.
Q.4.	Brinell hardness number (BHN) of a material is a number, which has
Al	no dimension.
B)	unit of length.
C)	unity of force/area.
D)	unit of force/length.
Q.5.	Air is best heated with steam in a heat exchanger of
A)	plate type.
B)	double pipe type with fin on steam side.
C)	double pipe type with fin on air side.
D)	shell and tube type.
Q.6.	With increase in porosity, the thermal conductivity of a solid substance
A)	Increases
B)	Decreases
(C)	remains unchanged
D)	may increase or decrease; depends on the solid
200.00	AND THE RESIDENCE OF A STATE OF THE STATE OF
Q.7.	For an ideal black body
Al	absorptivity = 1
B)	reflectivity = 1
C)	emissivity = 0
D)	transmissivity = 1
Q.8.	With the increase of temperature, the Col-burn jH factor
A)	increases.
13)	decreases.
C)	remains unchanged.
D)	may increase or decrease; depending on temperature.

Baffles in the shell side of a shell and tube heat exchanger 0.9. increase the cross-section of the shell side liquid. A force the liquid to flow parallel to the bank. B2 increase the shell side heat transfer co-efficient. () decrease the shell side heat transfer co-efficient. D) The heat transfer by radiation from a mild steel surface is to be reduced by reducing 0.10.the emissivity of the surface. This can be best achieved by painting the surface black. A) painting the surface white (with aluminium paint). 135 giving the surface a mirror finish. (3) raughening the surface. Di Internal energy change of a system over one complete cycle in a cyclic process is 0.11 A ZCEU 1ve B) (C) -70 dependent on the path DI Q.12. Solubility of a substance which dissolves with an increase in volume and liberation of heat will be favoured by the low pressure and high temperature. A low pressure and low temperature. B high pressure and low temperature. C) high pressure and high temperature. 9) Q.13. For a spontaneous process, free energy is zero A) Increases B) decreases whereas the entropy increases C7 and entropy both decrease D "At the absolute zero temperature, the entropy of every perfectly crystalline substance O.14. becomes zero". This follows from the third law of thermodynamics A) second law of thermodynamics B) Nernst heat theorem (3) Maxwell's relations TD5 Ammonia synthesis gas is produced from natural gas by 0.15. thermal cracking Al steam reforming Bi partial oxidation (1) hydrogenation 17) Q.16. Uren is represented as NH2.CO.NH2 Al NH;CO.CH; BI NH.CO2.NH CI NHCCO2.NH3 (0)

Q.17. A)	The monomer of poly vinyl chloride (PVC) is chloroethene
B)	7/3/2/3/1/2/3/1/3/1/3/1/3/1/3/1/3/1/3/1/3
	ethylene dichloride
C)	ethyl chloride
D)	chloroform
Q.18.	Buna-S is also known as
A)	teflon
B)	PTFE
(c)	SBR
D)	polycrylates
Q.19.	Epoxy resin is
A)	not used for surface conting.
B)	a good abrasive.
(c)	an elastomer.
D)	a polyester.
Q.20.	Oxidation of SO ₂ to SO ₃ is favoured by
A)	low temperature and low pressure.
B)	low temperature and high pressure.
C	high temperature and low pressure.
D)	high temperature and high pressure.
Di	nigh temperature and nigh pressure.
Q.21.	Starting raw material for the manufacture of alum is
A)	alumina
B)	gypsum
C)	bauxite
D)	ammonium bicarbonate
Q.22.	Which of the following is not produced commercially from sea water?
A)	Magnesium & potassium compounds
B)	Common salt
C)	Bromine
D)	Iodine
Q.23.	Salt is the basic raw material for the manufacture of
A)	cement
B)	glass
(1)	potteries
Dλ	canstic soda
Q.24.	Blue colour is imparted to glass by the addition of
A	FeSO ₄
B)	РЬО
(c)	CaO
D)	NaOH

AT	Aromatics
B)	i-paraffins
C)	n-paraffins
D)	Naphthenes
Q.26.	Visbreaking process is used mainly for making
A):	high cetane diesel
87	high octane gasoline
C)	fuel oil
D)	smoke free kerosene
Q.27.	Which of the following has the lowest viscosity (at a given temperature) of all?
A)	Naphtha
BX	Kerosene
C)	Diesel
D)	Lube oil
Q.28.	Which of the following reactions is undesirable in the production of catalyticall reformed gasoline?
A	Dehydrogenation of naphthene
B	Dehydrogenation of lower paraffins
C)	Dehydrocyclisation of higher paraffins
D)	Isomerisation of paraffins
Q.29.	Which of the following is not a sulphur compound present in petroleum?
A	Thiophenes
B)	Mercaptans
(C)	Sulphones
Di	Pyroles
1,77	
Q.30.	Softness of silver can be converted into hardness by alloying it with small quantity of
A)	copper & nickel
B)	zinc
C)	aluminium
D)	tin -
Q.31.	The addition of antimony in tin-based alloys improves its
Al	rupture strength and hot hardness.
B)	impact strength and bonding strength.
C)	deformation resistance.
D)	wear resistance.
Q.32.	Percentage elongation of a material is a measure of its
(A)	ductility
B)	brittleness
C)	toughness
D)	malleability
140.7	PARTITION OF THE PARTIT

Q.25. Which is the most undesirable component in kerosene?

Q.33.	The metals occuring at the lower most position in the electromotive series
A	do not resist corrosion.
B)	resist corrosion very strongly.
C)	are very brittle.
D)	are heat insulators.
Q.34.	Most efficient and suitable dust removal equipment for removal of flyash from flue gas in a thermal power plant is the
A	gravity settling chamber
B)	cyclone separator
C)	electrostatic precipitator
DE	bag filter
Q.35.	The main industrial source of emission of hydrogen sulphide air pollutant is
A)	petroleum refineries.
B)	coal based thermal power plants.
C)	pulp and paper plant.
D)	metallurgical roasting & smelting plant.
Q.36.	Which of the following is the most severe air pollutant?
A)	hydrocarbons
B)	NO ₈
C)	SO ₂
D)	CO
Q.37.	Presence of bacteria in potable (drinking) water causes
Al	turbidity
B)	disease
C)	had odour
D)	bad taste & colour
Q.38,	Pollution by particulate matter emission in the atmosphere does not take place during metal
A)	grinding
B)	machining
C)	cutting
D)	polishing
Di	potrsining
Q.39.	Carbonaceous particles having size less than 1 µm are called
A)	grit
B)	aggregates
C)	aerosols
D)	smoke
Q.40.	Irradiation of water by ultraviolet light of suitable wavelength is commonly used for disinfection of water in
A3	food industry.
B)	municipal sewage treatment.
C)	petroleum refinery.
TXX	incre Postual wheet

Q.41.	Presence of a certain minimum quantity of flourine is desirable in potable water to prevent
A)	dental cavities
B)	scale formation
ć)	water-borne disease
D)	corrosion
-555	
Q.42.	Which is the most efficient dust removal equipment for removal of sub-micronic dust particles from blast furnace gas?
A)	Packed scrubber
B)	Gravity settling chamber
(2)	Electrostatic precipitator
D)	Hydrocyclone
Q.43. A)	White smoke coming out of the chimney of a furnace indicates the use of low excess air.
B)	very high excess air.
	gaseous fuel in the furnace.
(C)	Political description of the political descri
D)	liquid fuel in the furnace.
Q.44.	Which of the following is a secondary nir pollutant?
A)	Photochemical smog
B)	Sulphur dioxide
C)	Nitrogen dioxide
D)	Dust particles
Q.45.	The term Biological Oxygen Demand (BOD) is used in relation to
A)	potable water
B)	cooling water
C)	distilled water
D)	industrial effluents
Q.46.	The destruction of water-borne pathogens is termed as disinfection of water. Which of the following is a water disinfectant?
A)	Chlorine
B)	Alkalis
C3	Benzene hexachloride
D)	Alkyl benzene sulphonate (ABS)
	Which of the following processes is involved in the biochemical treatment of sewage
Q.47	effluents?
2.7	Oxidation
A) B)	Reduction
	Dehydration
C.)	Fermentation
130	Peliticational

- Q.48. Presence of nitrogen and phosphorous in waste water discharged into lakes and ponds causes
- A) foaming
- B) odour nuisances
- C) undesirable plant growth
- D) turbidity
- Q.49. Cement Kiln is a
- A) rotary Kiln
- B) tunnel Kiln
- c) natural draft furnace
- D) batch furnace
- Q.50. Which of the following is a heat treatment furnace?
- A) Muffle furnace
- B) Annealing furnace
- C) Reheating furnace
- D) Rotary kiln