Bio-Chemistry(Ph.D.)

1.	What is the isoelectric point for phenylalanine given the p K_a for the COOH group is 1.83 and the NH ₃ ⁺ group is 9.13?								
	(A)	5.48	(B)	4.83	(C)	2.43	(D)	9.13	
2.	_	uence of amino		_	rotein is	found to be	–Ser-Gl	ly-Pro-Gly Th	e
	(A)	Alpha helix			(B)	Beta turn			
	(C)	Parallel beta s	heet		(D)	Anti-parallel	beta she	eet	
3.		cose is called on at the anome D-galactose				•	ion is:	dation-reductio	n
	(C)	D-gluconate			(D)	D-ribose			
4.	Side constants	e:	_	-				Γhis is surprisin	g
	(A) (B)		in of t	•	-			hobic ns are generall	у
	(C) (D)			otophan can ma otophan is hydr	•	•		s cannot ally hydrophilic	;
5.	with a (A)	pKa of approx Be fully ioniz	imately	•	us solut	ion, pH=7.0, s		ture –CH ₂ —Sel steine would:	Η
	(B) (C)	Be nonionic Never be four	nd in a n	rotein					
		Not be optical	-						
6.	Prosth	etic groups in p	oroteins	known as Glyo	coprotei	ns are compos	sed of:		
	(A)	Carbohydrate	(B)	Lipids	(C)	Metals	(D)	Phosphates	
7.					-	•		ecule came wit	h
	the dev	velopment of te	_	es to overcome e insoluble in s					
	(A) (B)			nalyses were to			specifoli	лен у	
	(C)	=		nalysės were te nalysis involve	_		ase		
	(D)	-		•				needed for thi	S

8.	An include binds in		cular st	ructure withi	in an ant	igen to which	an ind	lividual antibody				
	(A)	Antigen	(B)	Epitope	(C)	Fab region	(D)	Fc region				
9.		ological role o		•								
	(A)	Restrict the d	_	=		light						
	(B)	Make bacteri										
	(C)	Degrade fore	_									
	(D)	Restrict the s	size of L	na in certan	n bacteriu	m						
10	While (A)	in laboratory, Transformati of CaCl ₂	•			•		rial cells by: NA in presence				
	(B)	Mixing plasn	nids wit	h an extract o	of broken	cells						
	(C) Electrophoresis- a gentle low voltage gradient draws DNA into the cell											
	(D)	Microinjection	on									
11	cellula	r function?		- •	-		-	uminate a gene's				
	(A)	DNA microa	rray ana	llysis	(B)	Protein chip	analysis	S				
	(C)	Southern blo	tting		(D)	Two-hybrid	analysis	3				
12	. Tay-Sa	achs disease is	the resi	ult of a geneti	ic defect i	n the metaboli	sm of					
	(A)	Sterols		C	(B)	Gangliosides						
	(C)	Triacylglyce	rols		(D)	Vitamin D						
13	Non st	teroidal anti-ir	ıflamma	tory drugs (N	NSAIDS)	like aspirin ac	t by blo	cking production				
	(A)	Sphingolipid	S		(B)	Ceramides						
	(C)	Prostaglandii	ns		(D)	Waxes						
14	subjec		er chroi	natography o	n silica g	el using chlor	oform/n	chloroform and nethanol/water as				

Bees wax will move fastest, followed by cholesterol; phophatidylglycerol will be

(A)

slowest

	(B)	Cholesterol will move fastest, followers slowest	ed by B	Bees wax; phophatidylglycerol will be						
	(C)	Phophatidylglycerol will move fastest slowest	t, follo	wed by cholesterol; Bees wax will be						
	(D)	Bees wax will move fastest, followed slowest	by pho	ophatidylglycerol; cholesterol will be						
15.	-	helical DNA structures can resultions. These interactions are primarily: Covalent bonds involving deoxyribos Covalent bonds involving bases Hydrogen bonds involving the bases Hydrophobic interactions involving the	: se	m Hoogsteen (non Watson-Crick)						
16.		of the following statements about a plot of V_o vs. [S] for an enzyme that follows is Menten kinetics is false? At very high [S], initial velocity curve becomes a horizontal line that intersects								
		y-axis at Km								
	(B)	As [S] increases, initial velocity of rea	action '	Vo also increases						
	(C)	Km is the [S] at which Vo=1/2 Vmax								
	(D)	The shape of the curve is a hyperbola								
17.		llin and related drugs inhibit the enzym		_this enzyme is produced by						
	(A)	Beta lactamase, bacteria	(B)	Transpeptidase, human cells						
	(C)	Transpeptidase, bacteria	(D)	Lysozyme, human cells						
18.	activity	• •	nn 6.4. ved in t							
19.	Which (A) (C)	1 0	ind sha (B) (D)	red by TCA cycle and Urea cycle? Argino succinic acid Fumarate						

the

20.	 A patient reports with polyuria, polydipsia, polyphagia and blood glucose levels of 320 mg/dl; characteristic of Diabetes mellitus. Which of the following would occur in this patient? (A) Increased conversion of fatty acids to acetyl CoA (B) Decreased synthesis of cholesterol in liver (C) Increased fatty acid synthesis from glucose in liver (D) Increased stores of triacylglycerol in adipose tissue 									
	(D)	Increased stor	res of tri	acylglycerol in	adipos	e tissue				
21.			_	•			hydrox	cylation with an		
	enzym (A)	e requiring vii Histamine	(B)	and a subseque Creatinine	ent meti (C)	Epinephrine	(D)	Serotonin		
	` /		` /		, ,		` /			
22.		of the follow e intolerance:	ving dai	ry products co	ould be	recommended	l to an	individual with		
	(A)	Condensed m	ilk		(B)	Yogurt				
	(C)	Cheese			(D)	Ice cream				
23.	Catabo	olism of 1 mol	of glue	cose to lactate	in the s	elycolytic path	wav is	accompanied by		
		luction of how	_			5 J · · · J · · · I · · ·		r		
	(A)	2	(B)	0	(C)	4	(D)	8		
24.	first re	educed with the contract of th	he acce _l ual pois	ptance of the	electron	n and then oxi e following co	idized	etron carriers are with loss of the ds has the most		
	(C)	Carbon mono	xide		(D)	Chloramphen	icol			
25.	Which (A)	of the followi	ng nutri (B)	ents is rich in s Peanut oil	hort and	d medium chair Sunflower oil	•			
26.	-	•	buffer s	stabilized by by stem at physic	•			ollowing buffers		
	(C)	Deoxyhemog	lobin		(D)	Bicarbonate b	ouffer			
27.	span a	nd this period i	is referre	ed to as:		•		me during its life		
	(A)	S phase	(B)	M phase	(C)	G1	(D)	G2		
28.	The d (A)	erepression of Double negat	-	-	nce of l (B)	actose is an exa Double positi	-			
	(C)	Positive regul	lation		(D)	Negative regu	ılation			

29.	Which	of the following	ng is No	OT a stop codo	n in pro	karyotes?		
	(A)	UAA	(B)	UAG	(C)	UGG	(D)	UGA
30.	DNA i	s assembled in	to nucle	eosomes with t	he help	of special prote	eins cal	led
	(A)	Prolamines	(B)	Histones	(C)	Chaperones	(D)	Protamines
31.	Pasteu	r effect is due t	to inhib	ition of glycoly	ysis by l	nigh concentrat	ion of:	
	(A)	ATP			(B)	ADP		
	(C)	AMP			(D)	Creatine phos	sphate	
32.	Which	of the following	ng tests	is undertaken	to differ	entiate between	n Glucc	se and Fructose
	(A)	Benedict's tes	st		(B)	Seliwanoff's	test	
	(C)	Molisch test			(D)	Starch test		
33.	Sphing	gosine is not pr	esent in	n:				
	(A)	Gangliosides			(B)	Cerebrosides		
	(C)	Sphingomyeli	ın		(D)	Plasmalogen		
34.			_	_		yme in the tra ation in the mit	_	of high energy ria?
	(A)	Folic acid	(B)	Thiamine	(C)	Niacin	(D)	Ascorbic acid
35.	Choles	sterol is a precu	ırsor of	all except:				
	(A)	Bile salts	(B)	Bilirubin	(C)	Steroids	(D)	Vitamin D
36.	All am	ino acids exce	pt one,	participate in p	hase 2 r	eactions of det	oxificat	tion
	(A)	Serine	(B)	Glycine	(C)	Glutamine	(D)	Cysteine
37.	Hill re	action is conce	rned wi	ith the producti	on of			
	(A)	~ ~				nd ATP in mito	ochondr	ria
	(B) (C)	, ,	-	lysis in chlorop NADPH2 and (H ₂ O in chlorop	olasts	
	(D)			TPNH ₂ and A'				
38.	The C	4 plants are pho	otosyntl	hetically more	efficien	t than C3 plants	s becau	se
	(A)	They have mo		*		_		
	(B) (C)	CO ₂ compens CO ₂ efflux is		_				
	, ,		•					
	(D)	CO ₂ generated	d during	g photorespirati	ion is tra	apped through	PEP car	boxylase
39.	Artific		fruits is	s accomplished	by trea	tment with		
	(A)	IAA			(B)	Ethylene gas		
	(C)	Kinetin			(D)	Sodium Chlo	ride	

40.	Majori (A)	ty of Nitrogen fixation occurs by Lightening	(B)	Volcanic reuptions
	(C)	Haber Bosch process	(D)	Biological nitrogen fixing organisms
41.		ajor enzymes involved in Nitrogen fix Nitorgenase and hexokinase	, ,	
	(C)	Nitrogenase and hydrolyase	(D)	Nitrogenase and peptidase
42.		part of the brain controls eating, dren brain and endocrine system?	rinking,	body temperature & provides a link
	(A)	Parietal lobes	(B)	Temporal lobes
	(C)	Amygdala	(D)	Hypothalamus
43.	The tec	chnique used to locate specific genes i	n chror	nosomes is
	(A)	In situ hybridisation	(B)	Colony hybridisation
	(C)	Dot blot technique	(D)	Western blotting
44.	Revers (A) (B) (C) (D)	e transcriptase PCR uses DNA as a template to form ssDNA RNA as a template to form DNA mRNA as a template to form cDNA DNA as a template to form dsDNA		
45.	Minisa	tellites are		
	(A) (B) (C) (D)	Short coding repetitive regions on the Short non coding repetitive sequence 10-40 bp sized short sequences within Regions of chromosomes after second	s present	nt throughout the chromosome enes
46.	The us	e of living microorganisms to degrade	e enviro	nmental pollutants is called
	(A)	Microremediation	(B)	Nanoremediation
	(C)	Bioremediation	(D)	Georemediation
47.	Which	of the following chelating agents is	recomn	nended for acute Lead poisoning with
	_	f encephalopathy?	(D)	g :
	(A)	Dimercaprol and Calcium EDTA	(B)	Succimer
	(C)	Penicillamine	(D)	Calcium EDTA
48.	Which synthes	2	s not pro	eformed and therefore has to be newly
	(A)	Eosinophil chemotactic factor	(B)	Heparin

	(C)	Histamine		(D)	Prostaglandin		
49.	The cir	reculation of a two mor IgA (B)	nth old breast fe IgG	d baby (C)	will contain ma IgM	aternal: (D)	IgD
50.		ccination against myof the immune respons High titer of antibody	e to be stimulate		ch as tuberculo	sis, the	most important
	(B)	Cytotoxic T cells					
	(C)	Macrophage activation	ng cell mediated	l immu	nity		
	(D)	Neutrophils					

(BIOPHYSICS)

1.	(A) (B)	ost significant drawback in electrons. It is very costly It requires high technical skill	on micr	oscope i	s that
	(C) (D)	It is to be lodged in vacuum Living cells cannot be observed	under it	t	
2.		acterium tuberculosis is an intra-			m. It prefers to infect
	(A)	Macrophages		(B)	B-cells
	(C)	T-cells	• • • • •	(D)	Neutrophils
3.	What d (A)	oes θ signifies in Brags equation. Angle between incident x-ray ar			av
	(B)	Angle between incident x-ray ar			•
	(C)	Angle between incident x-ray ar	_		
	(D)	Angle between incident x-ray ar	nd x-ray	grid	
4.	Which cell?	gene transfer technique involves	the use	of a fatty	y bubble to carry a gene into a somatic
	(A)	Electroporation	(B)	_	me transfer
_	(C)	Microinjection	(D)		e bombardment
5.	What ro	eagent is quantified when perform Antibodies in patient's serum	nıng an	indirect (B)	ELISA? Fluorescent antibody
	(C)	Chromagen		(D)	Complement
6.	The vec	ctor for T-DNA is:			•
	(A)	Thermusaquaticus		(B)	Agrobacterium tumefaciens
	(C)	Bacillus thuringiensis		(D)	Salmonella typhimurium
7.	_	used as a common analgesic, an sis of which one of the following:		and ant	i-inflammatory agent, inhibits the
	(A)	Arachidonic acid		(B)	Prostaglandins
	(C)	Glucocorticoids		(D)	Histamine
8.		wave form of normal human ECC	_		to:
	(A) (B)	Septal and left ventricular depol Late depolarization of the ventri			ring back towards the AV junction
	(C)	Left to right septal depolarization			ing outer to wards the fire junetion
	(D)	Repolarization of atrium			
9.			is the m	ost sensi	tive label free quantification methods for
	protein			(D)	Info and an actuacy
	(A) (C)	UV spectroscopy Raman spectroscopy		(B) (D)	Infra-red spectroscopy Southern blotting
10		of the following proteins acts as	an enerc	` ′	· ·
10.	(A)	G-protein	(B)		orhodopsin
	(C)	Haemoglobin		(D)	Heat shock protein
11.	Which	of the following is unfavorable fo	or protei	in foldin	g?

	(A) (C)	Hydrophobic In Conformational		(D)	(B) Hydrog	Van DER Waal en Bonding	s Interac	etion	
12.		pinant proteins a Proteins synthe Proteins synthe	are sized in anii sized by transissed in cells	mals nsgene in hos s that are proc	st cell by duced by	rDNA technolo protoplast fusio			
13.		oprecipitation in	volve the pu	urification of					
	(A)	Antigen	431		(B)	Antibody	. 1	1	
	(C)	Antigen and a	ntibodies		(D)	Antigen-antibo	oay con	npiex	
14.	•	r's law relates	(R) Light	refraction (C	') Light	transmission (E))	Light	
		orption	(D) Light	Terraction (C) Ligii	transmission (L	,	Light	
15		-	wing is the	simplast math	and to an	timate the conce	ntration	of alvasgal in	
15.		ous solution of g	•	impiest meu	iou to es	umate the conce	niration	of glycefol in	
	(A)	UV absorption		у	(B)	Gas chromatogi	raphy		
	(C)	pH measureme	ent		(D)	Viscosity mea	sureme	nt	
16.	Choose (A) (B) (C) (D)	disallowed regions. It is not possible conformation	are unstructions e to conclude of beta turn	etured will have been a particular to the state of the st	nave all peptide a on in a pe	the backbone	elix or e	al angles in the	
17.	protease after pro (A)		e following , could be th 280 nm	spectroscopi	c measu	and after digestic rement the signa Circular dichron Fluorescence va	l change		
18.	` ′			ecific mRNA	,	a cell can be det		V	
	(A)	Northern blot a	nalysis		(B)	RNase protection	-		
	(C)	In situ hybridiza	ation		(D)	Real-time PCR			
19.	Which (A) (C)	one of the follow ELISA Flow cytometry		cal technique (D)	(B)	OT involve an o Microarray ntial Scanning C	-		
20.		ondary antibodic experiment are	•	used for the	detection	n of primary anti	bodies i	n western	
	(A)	Anti-allotypic	` '	nti-idiotypic		Anti-isotypic	(D)	Anti-paratypic	
21.		deacytalase (Hl amino acid of hi	-			cetyl group from	N-termi	nal of histones.	
	(A)	Lysine		ginine	(C)	Asparagine	(D)	Histidine	
	` /	•	. ,	_	` /	1 0	` /		

22.	Where	are CD-45 cells responsible for si	gnal trai	nsduction	on in the body lo	cated?	
	(A)	B-cells		(B)	T-cells		
	(C)	All leukocytes except T-cells		(D)	Haemopoietic o	ells	
23.	Which	of the following antibiotics work	by inhib	oiting p	rotein synthesis i	n the ta	rget organism?
	(A)	Quinolones and Bacitracin		(B)	Streptomycin a	nd Tetra	acycline
	(C)	Rifampicin and Cephalosporin	(D)	Tetracy	ycline and Ampio	cillin	
24.	Which	one of the following chemicals is	a DNA	interca	lator?		
	(A)	5-Bromouracil		(B)	Ethyl methane	sulfona	te
	(C)	UV		(D)	Acridine orang	e	
25.	The ap	propriate match in Column 1 and 1	2 is				
		COLUMN 1		COL	UMN 2		
	a	Ferritin	i	Carbo	oplatin		
	b	Chemotheraphy	ii	Iron s	storage		
	c	Metallothioneins	iii	Cyste	ein rich protein		
	(A)	a-i, b-ii, c-iii		(B)	a- ii, b-i, c-iii		
	(C)	a-i, b-iii, c-ii		(D)	a- iii, b-i, c-ii		
26.	Which	of the following groups contain o	nlv aron	natic A	minoacids?		
	(A)	Histidine, Serine, Tryptophan	•	(B)	Phenylalanine	. Tvros	sine, Valine
	(C)	Tryptophan, Tyrosine, Histidi		(D)	Alanine, Tyro	•	
27		iate hypersentivity reactions are a		, ,	•	,	
41.	(A)	IgG (B) IgE	SSOCIALE	u wiiii (C)	IgM	(D)	IgA
• •	` ′			(C)	igivi	(D)	igA
28.		ological role of Cytochrome P-450) is	(D)	0 1141 (D)	II. DC	NI
	(A) (C)	Nitrogen Fixation Amide hydrolysis		(B) (D)	Oxidation of R Oxidation of ar		
••		• •	ā				
29.		life of 100 g iodine (I131) is 8 day					•
	(A)	50 g (B) 75 g		(C)	6.25 g	(D)	25 g
30.		of the following statements is/are					
	(A)	Temperature coefficient of the					
	(B)	Temperature coefficient of the					
	(C)	The resistance-temperature	relation	nship	of thermistors	s is e	exponential and
	(T)	thermoresistor is linear					
	(D)	The resistance-temperature	relatio	onship	of thermore	sistor	is exponential
21		and thermistor is linear					
31.	A neop (A)	olasm is A population of cells growing or	it of con	itrol			
	(B)	A cell organelle that begins the p			ng a cell cancero	us	
	(C)	The nucleus of a cancer cell		,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	(D)	Pain caused by cancer cells putti	ng press	sure on	neurons		
22	A ·	alandara dan di DNIA - 1 - 1 W '	1		- C		
<i>5</i> 2.	"A sing	gle ring-shaped DNA molecule" is The only genetic material in a ca		_	Ν		
	(11)	The only generic material ill a ca		1			

	(B) (C) (D)	The bacterial ch The viral chron A transposon		ome						
33.	The tun	nor suppressor g u2	gene that (B)	shows u	ıp in app	oroximat (C)	ely half of all U 6pac	J.S. cance (D)	ers is called p53	
34.	Increase (A)	ed blood flow to Anaplasia	a cance (B)	rous tun Metast		lled (C)	Malignancy	(D)	Vascularization	n
35.		ation that remove letter is called	es a base	e pair an	d thus of	ffsets the	e reading frame	of the ge	enetic sequence	
	(A) (C)	A basal disrupt A bump-and-ru		ion		(B) (D)	A frameshift r A sliding sequ		ation	
36.	Lack of (A)	thymus leads to Thymectomy	increas	ed infec	tion in h	umans s (B)	uch a condition Nude mice	called		
	(C)	DiGeorge's syn	ndrome			(D)	None of above	e		
37.	•	ofreading of nev	wly synt	hesized	DNA, to	excise	incorrect nucleo	otides wh	ich have been	
	inserted (A)	l, is done by: A restriction en	donucle	ases	(B)	DNA			gyras	se
	(C)	DNA ligase				(D)	DNA polymer	ase III		
38.	The coc (A)	don is found in : DNA	(B)	rRNA		(C)	tRNA	(D)	mRNA	
39.	The size (A) (C)	e of the E.coli go 4640 bp 4.64 Mbp	enome is	S		(B) (D)	4.64 Kbp Not known wi	th certain	nty	
40.		yme that recog		specifi	c (palin	dromic)	sequence and	cuts wit	thin a DNA	
	(A)	tle is called a(n Exonuclease Modification of	,			(B) (D)	Methylase Restriction e	ndonucle	ease	
41.	Which (A)	polymerase man		espread	d use of	PCR po		aticus (T	Րaq) polymeras	e
	(C)	DNA polymer	rase III			(D)	None of the a	above	2 2 2	_
42.		eins are involve lowing forms o							ors. Which of	
	(A)	G-protein –AI	-	tems ec	moracic	(B)	G-protein-A	ГР		
	(C)	G-protein-GD	P			(D)	G-protein-G	ГР		
43.	Which oprocess	one of the follow	wing con	npounds	does no	t act as	second messeng	ger during	g signaling	
	(A)	cAMP				(B)	Calcium ions			
	(C)	Ionositol-3,4,5-	trisphos	phate		(D)	Triacylglycero	ol		

44.		of the following biochem bagate intracellular signal		is is mo	st commonly	utilized b	by living	cells
	(A)	Acylation	13.	(B)	Phosphoryla			
	(C)	Methylation		(D)	Decarboxyla	ation		
45.	Tight ju	nctions: Are essential for metabo	die coupling					
	(A) (B)	Donot occur in vertebrat						
	(C)	Have the closest approach	ch of two pla	sma me	mbranes of a	ny junctio	on	
	(D)	Surround connexons						
46.	Which kinases	of the following is the com?	ponent in the s	signaling	g pathway stin	nulated by	receptor t	yrosine
	(A)	Adenylate cyclase		(B)	Adaptor prote	eins		
	(C)	Autophosphorylating rece	ptor (D)	Ras acti	ivating proteir	ı		
47.	Which (A)	of the following wavelengt 0.8-500µm (B) 40	•	ociated (C)	with UV spect 380-750nm	troscopy? (D)	0.01-10	nm
48.		n microscopes have higher	resolution than			•		
	(A) (C)	Higher magnification Very short wavelength of	of electrons	` /	Lenses used Bulky struct			•
40	` /	_		` /	•		•	
49.	(A)	ene ($\lambda_{max} = 469 \text{ nm}$) is prese Green (B) R	ed in tomatoes		Blue	(D)	Orange	поι
50.		of the following is not a lin n absorption, thickness, and Concentration must be low	d concentration		ert's law, whic	ch gives the	e relation	
	(B)	Radiation must have higher	er bandwidth					
	(C)	Radiation source must be	monochromati	c				
	(D)	Does not consider fac	tors other th	nan thi	ckness and	concentrat	tion that	affect
		absorbance						

(BOTANY)

1)	Basal elaterphore present in the capsule of <i>Pellia</i> develops from:											
	(A)	Elater mother cells	(B)	Sterile sporogenous	cells							
	(C)	Fertile sporogenous cells	(D)	Amphithecium								
2)	Whic	ch of the following pair is an ex	kample	of saprophytic liver	wort and moss							
	respe	ectively?										
	(A)	Cryptothallus mirabilis and Buxbaumia aphylla										
	(B)	Buxbamia aphylla and Cryptothall	us miral	bilis								
	(C)	Cryptothallus and Zoopsis										
	(D)	(D) Zoopsis and Cryptothallus										
3)	Setae are absent in the sporangium of:											
	(A)	Anthoceros and Corsinia	(B)	Corsinia and Tortula	\boldsymbol{z}							
	(C)	Tortula and Antoceros	(D)	Sphagnum and Cors	inia							
4)	Name the earliest land vascular plant discovered from Mid Silurian of Ireland.											
	(A)	Cooksonia (B) Rhynia	(C)	Aglaophyton (D)	Psilophyton							
5)	Whic	Which of the following statement is not true about stele system of pteridophytes?										
	(A)	Primitive type of stele is found in A	Lycopodi	ium								
	(B)	Stele in which centre is occupied by pith is called siphonostele										
	(C)	A siphonostele perforated by several overlapping leaf gap is called Solenostele										
	(D)	Amphiphloic siphonostele is the condition in which xylem is surrounded on both										
		sides by phloem, pericycle and end	lodermis	3								
6)	In transverse sections of a young stem, if vallecular canals and cranial canals are											
	prese	present, then the plant belongs to:										
	(A)	Lycopodiales (B) Isoetales	(C)	Selaginellales (D)	Equisetales							
7)	Whic	ch of the following families of the g	_	erms has 1 ovule per	scale?							
	(A)	Pinaceae (B) Araucariace	, ,	Cupressaceae (D)	•							
8)	Sago	is a starch mostly obtained from p	ith and	cortex of the stem of	Cycas species:							
	(A)	Cycas cercinalis	(B)	Cycas revoluta								
	(C)	Cycas pectinata	(D)	Cycas rumphi								
9)		mulcent is a drug that:										
	(A)	Calms the nerves and induces sleep)									
	(B)	Enhances appetite and digestion										
	(C)	Soothes skin and mucous membrane										
	(D)	Increases the discharges of urine										
10)		ch of the following plant extract has		•	n?							
	(A)	Azadirachta indica	(B)	Cassia augustifolia								
	(C)	Withania somniferum	(D)	Aegle marmelos								

11)	In which of the following types, the embryo sac has 16 nuclei, with a 3-celled egg apparatus and two polar nuclei?												
	арра (А)	ratus and two Peperomia	(B)	Penaea	(C)	Drusa	(D)	Fritillaria					
	` /	1	()		,		()						
12)	Ambo	Amborella trichopoda is now widely considered as:											
	(A)	Oldest know	n fossil	s of an angiosp	erm								
	(B)	Most primitive living angiosperm											
	(C)	Most primitive living vascular plant											
	(D)	Oldest know	n fossil	of a seed plant	t								
13)	Whic	ch of the follow	ving alg	gae have nonfl	agellate	coenobia?							
	(A)	Eudorina	(B)	Pandorina	(C)	Pediastrum	(D)	Volvox					
14)	Formation of statospores is a characteristic feature of:												
	(A)	Chlorophyta	Divisio	on	(B)	Chrysophyta	a Divisio	on					
	(C)	Phaeophyta Division (D) Pyrrophyta Division											
15)	The 1	The most important alga used as food in Japan is:											
	(A)	Furcellaria j	^f astiaga	ta	(B)	Gleopeltis fi	Gleopeltis furcata						
	(C)	Microcystis o	aerugin	osa	(D)	Porphyra te	nera						
16)	Whic	ch of the follow	ving sh	ows secondary	growtl	h by successive	e cambi	a?					
	(A)	Boerhaavia d	diffusa		(B)	Aristolochia	triangu	laris					
	(C)	`											
17)	Bicol	lateral vascul	ar bun	dles are char	acterist	ic feature of	which o	of the following					
	genei	ra:											
	(A)	Cucurbita	(B)	Helianthus	(C)	Althaea	(D)	Salvia					
18)	The type specimen is collected from the original material to serve as nomenclature												
	type,	type, when holotype is missing:											
	(A)	Isotype	(B)	Lectotype	(C)	Neotype	(D)	Topotype					
19)	ICN	stands for:											
	(A)	International	code o	f nomenclature	for plai	nts							
	(B)	International	code o	f nomenclature	for alga	ae, fungi and p	lants						
	(C)	International	code o	f nomenclature	for alga	ae and fungi							
	(D)	International	code o	f nomenclature	for ang	iosperm only							
20)	Whic	ch of the foll	owing	is a bionomi	al in w	which genus a	and spe	cies names are					
	ident	ical in spelling	g?										
	(A)	Autonym	(B)	Tautonym	(C)	Homonym	(D)	Synonym					
21)	The (Genome D pre	sent in	bread wheat i	is suppo	sed to have b	een deri	ved from:					
	(A)	Aegilops Sqı	ıarrosa		(B)	Aegilops Spe	eltoides						
	(C)	Triticum Mo	пососсі	um	(D)	Triticum vul	gare						
22)	The J	process involvi	ing insp	oection, fumig	ation ar	nd growing the	e introd	uced					
	plant	: material in is	olation	is known as									

	(A)	Acclimatization	(B)	Quarantine								
	(C)	Adaptation	(D)	Tolerance								
23)		rosis is:										
	(A)	Superiority of hybrids over their pa	irents									
	(B)	Induction of mutation										
	(C)	Mixture of two or more traits										
	(D)	Spontaneous mutation										
24)	A type 1 survivorship curve is characteristic of the species with a rapid increase in											
		ality in old age. This type of curve i										
	(A)	Typical of many invertebrates that	_									
	(B)	, •••										
	(C)											
	(D) Typical of all species of birds											
25)	According to McArthur and Wilson's equilibrium theory, which of the following is											
	true?	Larger islands and islands closer to continent are expected to have more species										
	(H)	than smaller and isolated islands	o contin	ient are expected to have more species								
	(B)	Smaller islands and islands far from the continent are expected to have more										
		species than larger and isolated islands										
	(C)	Smaller islands and islands closer to the continent are expected to have more species than far away and isolated islands										
	(D)	More species are expected on all islands irrespective of their size and distance										
	from continent											
26)	Wetlands are conserved internationally through an effort called:											
	(A)	Basei convention	(B)	Rio convention								
	(C)	Montreal convention	(D)	Ramsar convention								
27)	Whic	ch of the following fungal group bel	ongs to	phylum Straminopila?								
	(A)	Ascomycota	(B)	Basidiomycota								
	(C)	Zygomycota	(D)	Oomycota								
28)	Whic	ch of the following zoosporic fungi l	nas nucl	ear cap in its zoospores?								
	(A)	Blastocladiella emersonii	(B)	Apodachlya brachynema								
	(C)	Plasmodiophora brassicae	(D)	Phytophthora infestans								
29)	Unic	ellular stalked teleutospores with p	apillar	thickening is a characteristic feature								
	of the	e following rust genera?										
	(A)	Uromyces (B) Puccinia	(C)	Phragmidium (D) Ravenelia								
30)	Phen	ylalanine, a precursor of most of t	he phen	olics in higher plants is a product of								
	whic	h one of the following pathways?										
	(A)	Shikimic acid pathway	(B)	Malonic acid pathway								
	(C)	Mevalonic acid pathway	(D)	Methylerythritol pathway								

31)	Gibberellic acid (GA) controls seed germination by directing breakdown of the										
	store	d starch. In which one of the follo	wing ti	issues of the barley seed, α-amylase							
	gene	is induced in response to GA?									
	(A)	Endosperm (B) Coleoptile	(C)	Aleurone layer (D) Embryo							
32)	How	many ATP and NADPH2 are use	ed in (\mathbb{C}_3 cycle for net production of one							
	molecule of 3-phosphoglyceraldehyde?										
	(A)	3ATP and 2 NADPH ₂	(B)	9ATP and 6 NADPH ₂							
	(C)	6ATP and 6 NADPH ₂	(D)	6ATP and 9 NADPH ₂							
33)	Magr	Magnesium, iron and Molybdenum metals are present in enzymes as activators,									
	which are:										
	(A)	Cytochrome, Peptidases and Phosph	otases	respectively							
	(B) Phosphatases, Cytochromes and Nitrogenase respectively										
	(C)	Fructokinase, Cytochromes and Nitr	ate red	uctase respectively							
	(D)	Dehydrogenase, Kinase and Nitrate	reducta	se respectively							
34)	If the free energy change (ΛG) in a reaction is a negative value, it indicates that the:										
	(A)	Reaction releases energy	(B)	Reaction absorbs energy							
	(C)	Reaction is in positive direction	(D)	Reaction is in negative direction							
35)	Enzy	Enzyme acts as biological catalyst by increasing rate of reaction by:									
	(A)	Increasing activation energy	(B)	Decreasing activation energy							
	(C)	Increasing free energy change	(D)	Increasing entropy							
36)	Durii	ng protein synthesis in prokaryotes	, the p	eptidyl transferase activity required							
	for p	epetide bond formation is due to:									
	(A)	Ribosomal proteins	(B)	16S ribosomal RNA							
	(C)	23S ribosomal RNA	(D)	Aminoacyl t-RNA							
37)	Majo	or function of σ -Subunit of E . $coli$ RN	NA poly	merase during transcription is to:							
	(A)	Initiate transcription and does not fa	ll off dı	aring elongation							
	(B)	Decreases affinity of core enzyme to	promo	oter							
	(C)	Binds to DNA independent of core e	enzyme								
	(D)	Ensure recognition of promoter region	on by i	nteracting with core enzyme							
38)	Durii	ng replication, the RNA primer is de	graded	by the 5'-3' exonuclease activity of:							
	(A)	RNase H1 (ribonuclease H1)	(B)	FEN-1 (flap endonuclease 1)							
	(C)	TopoisomeraseII B	(D)	DNA polymerase E							
39)	Speci	ies richness is much pronounced in v		· -							
	(A)	Tropical rain forest	(B)	Tropical deciduous forest							
	(C)	Temperate forest	(D)	Alpine forest							
40)	Avera	age annual precipitation and temper		of temperate forest are respectively:							
	(A)	255 cm precipitation and 25°C temperature.									
	(B)	300 cm precipitation and 15°C temperature.									
	(C)	100 cm precipitation and 15°C temperature.	erature								

(D) 300 cm precipitation and 25°C temperature								
41) Subalpine forest and tropical thorn forest are dominated with follow	ving plant							
species:								
(A) Dichanthium and Abies (B) Ilex and Pinus								
(C) Abies and Acacia (D) Dipterocarpus and Acacia								
42) The apple scab disease is caused by:								
(A) Xanthomonas citri (B) Venturia inaequalis								
(C) Colletotrichum falcatum (D) Curvularia prasadii								
43) The 'Tundu' disease of wheat is caused by:								
(A) Anguina triticia and Corynebacterium tritici								
(B) Anguina tritici								
(C) Anguina tritici and Erwinia dissolvens								
(D) Globodera tritici								
44) The "Great Bengal Famine" in 1943 was the result of which of the followi								
(A) Bunt of wheat caused by <i>Telletia</i>								
(B) Helmithosporium blight of rice								
(C) Blast of rice caused by <i>Pyricularia</i>								
• • •	Late blight of potato caused by <i>Phytophthora</i>							
- · · · · · · · · · · · · · · · · · · ·	Standard deviation of a sample is 240 and number of individuals of the sample are							
64. Find out the Standard error of mean (SEM)?								
(A) 30 (B) 50 (C) 20 (D) 60	(63.5)							
46) Choose the correct relation among arithmetic mean (AM), geometric n	ean (GM)							
and harmonic mean (HM):								
(A) GM>AM>HM (B) HM>AM>GM								
(C) AM>GM>HM (D) HM>AM>GM								
47) Which of the following is a non parametric test? (A) Chi square test (B) F-test								
(A) Chi square test (B) F-test (C) T-test (D) ANOVA test								
48) The genetically modified tomato 'Flavr Savr' with delayed ripening was	the regult							
of:	the result							
(A) Over expression of Antisense gene for <i>polygalacturonase</i>								
(B) Gene silencing by antisense RNA								
(C) Over expression of gene for ethylene biosynthesis								
(D) Over expression of gene for ACC synthase								
49) Glyphosate-based herbicides, such as Roundup, target which pathway of	he nlants?							
(A) Mevalonic acid pathway	ne plants.							
(B) Shikimate pathway enzyme 5-enolpyruvylshikimate 3-phosphate (EPS	P) synthase							
(C) Methyl erythritol pathway	, - J							
(D) Malonic acid pathway								

50)	Which of the following genetic engineering method is best suited for addition of gene	
	into plants?	

(A) Plasmid method

(B) Vector method

(C) Biolistic (gene gun) method

(D) Microinjection

x-x-x

(CHEMISTRY)

1.	The variable that is kept constant in an isobaric process is										
	(A)	Volume	(B)	Temperature	(C)	Molarity	(D)	Pressure			
2.	The f	following isoto	pe is ra	adioactive							
	(A)	^{3}H	(B)	¹² C	(C)	2 H	(D)	¹⁶ O			
3.	The drag on the central ion as discussed by Debye Huckel is known as										
	(A)	Viscous effe	ect		(B)	Electrophoretic effect					
	(C)	Asymmetry	effect		(D)	Wien effect					
4.	The v	well known ra	dioisoto	ope ¹⁴ C decays	by emi	tting the follo	wing pa	rticle			
	(A)	Alpha	(B)	Negatron	(C)	Positron	(D)	Neutron			
5.	The volume occupied in Litres by 18.0 g of Oxygen gas made up of Oxygen atoms										
	having 10 neutrons at normal temperature and pressure is										
	(A)	5.6	(B)	11.2	(C)	2.24	(D)	22.4			
6.	An experimenter tries to melt ice at 265 K as well as at 300 K. The sign of ΔG for the										
	melti	ng of ice exp	erimen	t at 265 K an	d 300	K respective	ely can	be expressed as			
	follov	ws:									
	(A)	+ -	(B)	+ +	(C)	- +	(D)				
7.	It was observed that in a chemical reaction A proceeding to B the increase in the concentration of A by 3 times increases the reaction rate by 9 times the order of the										
	conce	entration of A	by 3 ti	mes increases t	he rea	ction rate by	9 times	the order of the			
	react	ion would be									
	(A)	1	(B)	0	(C)	2	(D)	3			
8.	In Raman Spectroscopy the scattered radiation having energy more than the										
	incident radiation is called										
	(A)	Stokes	(B)	Anti-Stokes	. ,	•	(D)	Thermal			
9.	Give	n that $g_N = 5.5$	85 and	$\mu_{\rm N} = 5.05 \times 10^{-3}$	²⁷ J T ⁻¹	the NMR fro	equency	of a proton in a			
	magnetic field of intensity 2.82 Tesla would in MHz be										
	(A)	60	(B)	120	(C)	90	(D)	30			
10.	Deby	e Falkenhege	n Effec	ct describes the	e cond	luctance of a	n electr	olyte of interest			
	unde	r the following	g condi	tion							
	(A)	High AC fre		(B)	High Voltag	ge					
	(C)	Low Concer	ntration		(D)	High Viscos	sity				
11.	The o	de Broglie wa	velengt	h of an electroi	n movi	ng with a vel	ocity of	4.8 x 10 ⁵ m sec ⁻¹			
	is abo	out									
	(A)	1.5 x 10 ⁻⁹ m	(B)	$3.0 \times 10^{-10} \text{m}$	(C)	$4.8 \times 10^{-5} \mathrm{m}$	(D)	$4.8 \times 10^5 \mathrm{m}$			

12.	The p	pair ¹³ C and ¹³	N is an	example of							
	(A)	Isobar	(B)	Isotone	(C)	Isomer	(D)	Isotope			
13.	The number of elements depicted in the most recent periodic table is										
	(A)	103	(B)	92	(C)	109	(D)	118			
14.	The unit cell parameter a=b=c and α = β = γ = 90^{0} represents crystal system										
	(A)	Tetragonal	(B)	Cubic	(C)	Monoclinic	(D)	Hexagonal			
15.	The l	owest bond er	ergy is	depicted by th	e bond	between follo	wing pa	air of atoms			
	(A)	H-F	(B)	H-Br	(C)	Н-Н	(D)	C=C			
16.	If the	e number of w	ays of a	a molecular ar	rangem	ent can be exp	pressed	by term X then			
	the re	elationship be	tween e	entropy S and t	he tern	n X can be rep	present	ed by			
	(A)	S=X	(B)	S=kX	(C)	S=Q/T	(D)	S=klnX			
17.	The	neutron to p	roton	ratio in the is	sotope	of the elemen	nt Boro	on having mass			
	numl	ber 13 is									
	(A)	1.6	(B)	1.0	(C)	13	(D)	5			
18.	A compound X on heating gives a colourless gas. The residue is dissolved in water to										
	obtai	n Y. Excess C	CO ₂ is b	oubbled throug	gh aque	ous solution o	f Y wh	ich result in the			
	form	ation of Z. Z o	n gentl	e heating gives	back 2	X. The compou	ınd X i	s:			
	(A)	CaCO ₃	(B)	Na2CO ₃	(C)	$Ca(HCO_3)_2$	(D)	K_2CO_3			
19.	When orthoboric acid (H ₃ BO ₃) is heated, the residue left is:										
	(A)	Boron			(B)	Metaboric ac	id				
	(C)	Boric anhydr	ride		Borax						
20.	Which of the following trihalides of nitrogen is least basic:										
	(A)	NF_3	(B)	NCl_3	(C)	NBr_3	(D)	NI_3			
21.	The number of P-O-P and P-O-H bonds present respectively in pyrophosphoric										
	acid	molecule are:									
	(A)	1,2	(B)	2,2	(C)	1,4	(D)	1,8			
22.	Whic	ch of the follow	ving do	es not form cla	therate	es:					
	(A)	Helium	(B)	Argon	(C)	Krypton	(D)	Xenon			
23.	The a	aqueous soluti	on cont	taining which o	ne of t	he following io	ns will	be			
	colou	rless:									
	(A)	Mn ²⁺	(B)	Fe ²⁺	(C)	Ti ³⁺	(D)	Sc^{3+}			
24.	Whic	ch of the follow	ving be	longs to C _{3v} po	int gro	up:					
	(A)	SO_3	(B)	BBr_3	(C)	NH_3	(D)	AlCl ₃			
25.	Whic	ch structures f	or XeO	3 and XeF4 are	consis	tent with the V	SEPR	model?			
	(A)	Trigonal pyr	amidal,	Square planar	(B)	Trigonal plar	nar, Squ	are planar			

	(C)	Trigonal pyr	amidal,	Tetrahedral	(D) Trigonal planar, Tetrahedral							
26.	The compound which exhibits Jahn-Teller distortion is:											
	(A)	[Mn(H2O)6]2	2+		(B)	$[Mn(H_2O)_6]$	3+					
	(C)	$\left[\operatorname{Cr}(H_2\operatorname{O})_6\right]^{3+}$	-		(D)	$[Fe(CN)_6]^{4-}$						
27.	The t	total no. of iso	mers in	Co(en) ₂ Cl ₂ is								
	(A)	4	(B)	3	(C)	6	(D)	5				
28.	The 1	no. of lines tha	t appea	r in the EPR	spectra	of $[C_6H_6]$ is:						
	(A)	5	(B)	7	(C)	11	(D)	13				
29.	The hardness of water is measured by:											
	(A)	Distillation			(B)	Conductivit	y					
	(C)	EDTA metho	od		(D)	Sublimation						
30.	Cyan	ide process is	used to	obtain:								
	(A)	Cr	(B)	Ag	(C)	Cu	(D)	Zn				
31.	Whic	ch of the follow	ving ha	s largest bond	angle:							
	(A)	NH_3	(B)	PH_3	(C)	AsH_3	(D)	SbH_3				
32.	Perox	xo linkage is p	resent i	in:								
	(A)	H_2SO_3	(B)	H_2SO_5	(C)	H_2SO_4	(D)	$H_2S_2O_7$				
33.	WOC complex present in photosynthesis process contain											
	(A)	Zn	(B)	Fe	(C)	Pu	(D)	Mn				
34.	Assign R / S configuration at C-1, C-2 and C-5 in the following compounds.											
				CH ₃ 2 1 = C H ₃ C CH ₃	I							
	(A)	1R,2S,4R	(B)	1R,2R,4R	(C)	1S,2S,4R	(D)	1S,2R,4R				
35.	Mark	k the relations	hip shij	p between foll	owing s	tructures X a	nd Y:					
		H, C		CI_H								
	(A)	Enantiomers	(B)	Diastereome	ers (C)	Meso	(D)	Same				
36.	Whic	ch reactive into	ermedia	ate is involved	in the f	following reac	tion?					
		Br	<u>LD</u> NHCH ₃	A / THF >		N CH ₃						

	(A)	Carbene	(B)	Nitrene	(C)	Benzyne	(D)	Free radical			
37.	React	tion of 2-buten	-1-ol w	ith thionyl ch	loride re	esults in form	ation of	:			
	(A)	3-Chloro-1-bi	utene		(B)	1-Chloro-2-b	outene				
	(C)	1,2-Dichlorob	outane		(D)	1,3-Dichloro	butane				
38.	Solvo	lysis of neopen	tyl bro	mide result i	n format	tion of:					
	(A)	2-Methyl-2-b	utene		(B)	3-Methyl-1-l	outene				
	(C)	2-Butene			(D)	1-Butene					
39.	Nitra	tion of N,N-dir	nethyla	miline results	s in form	ation of:					
	(A)	<i>m</i> -Nitro-N,N-	dimeth	ylaniline	(B)	o-Nitro-N,N-dimethylaniline					
	(C)	<i>p</i> -Nitro-N,N-0	•		(D)	N-Nitro-N,N	-dimeth	ylaniline			
40.		lphonation of b	enzene	-							
	(A)	SO_2	(B)	SO	(C)	SO_3	(D)	S_2O			
41.	Addition elimination mechanism of aromatic nucleophilic substitution involves the										
		nediary of:	(T)	~	(G)	a .	(5)	_			
40	(A)	Carbocation	(B)	Carbanion	(C)	Carbene	(D)	Benzyne			
42.	Predi	ct the product		O .							
	CHO I. CH ₃ NO ₂ /NH ₄ OAo					/					
			II. LAH		→ >	\					
	(A)	2-Phenyl ethy			(B)	1_Dhenvl eth	vl amin	Δ			
	(C)	Benzyl amine		,	(D)	1-Phenyl ethyl amine Ethyl benzene					
43.	The b	est reagent to	achieve	the followin	g transfe	ormation is:					
	\Diamond	_COOH		∠CH ₂ C)H						
		_	-								
	<i></i>	COOC ₂ H ₅		C000	C ₂ H ₅						
	(A)	BH ₃ .THF	(B)	LiAlH ₄	(C)	$NaBH_4$	(D)	NaBH ₃ CN			
44.	Select	tive reduction	of keto	ne in presenc	e of alde	hyde can be a	chieved	l by use of:			
	(A)	NaBH ₄ / CH ₃	OH								
	(B)	NaBH ₃ CN / C	CH ₃ OH								
	(C)	[I. NaBH ₄ /	CH ₃ OH	[/CeCl ₃]							
		[II. H_2O/H^+]								
	(D)	NaBH(OOCC	$(H_3)_2$								
45.	The b	est reagent for	r trans	hydroxylatio	n of alke	enes is:					
	(A)	Jones reagent			(B)	Sarett reager	ıt				

(C) Collins reagent

- (D) Prevost reagent
- **46.** Predict the product X in the following reaction:

$$\begin{array}{c} & \text{I. PhMgBr / THF} \\ \hline & \text{II. H}_2\text{O / H} \end{array} \hspace{-0.5cm} X$$

(A) Benzoic acid

(B) Benzophenone

(C) Diphenyl amine

- (D) Benzaldehyde
- 47. Oxidation of styrene to phenyl acetaldehyde can be achieved by use of:
 - (A) alk. KMnO₄

- (B) MnO₂
- (C) Tl $(NO_3)_3$ / dil. HNO_3
- (D) HIO₄
- 48. Which intermediate is involved in Favorskii rearrangement?
 - (A) Cypclopropane

(B) Cyclopropene

(C) Cyclopropanol

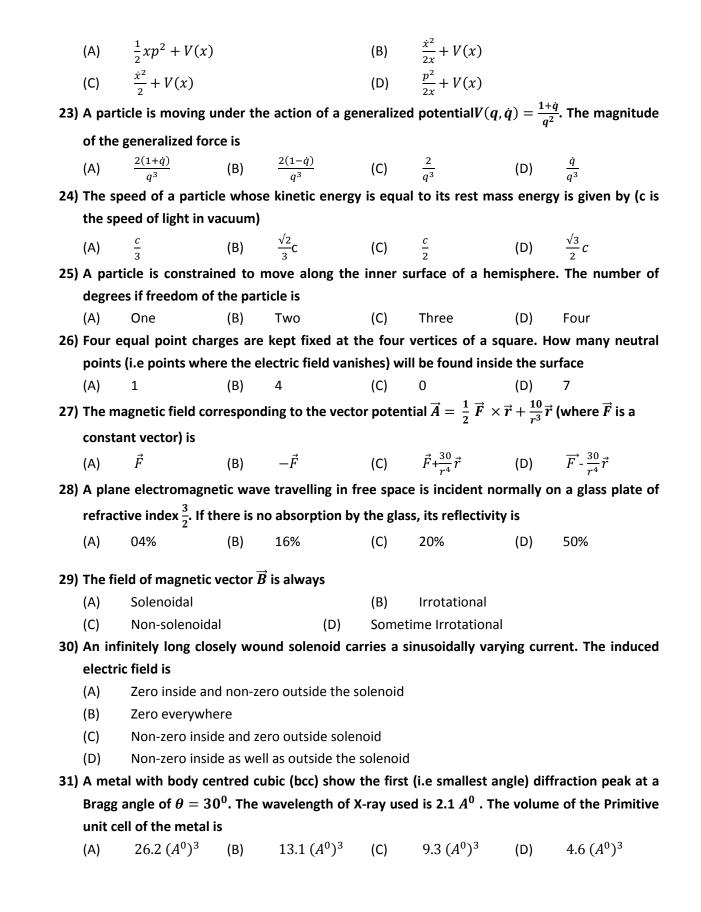
- (D) Cyclopropanone
- 49. Predict the product of the following reaction:

- 50. Acid catalysed hydration of propyne results in formation of:
 - (A) Propane oxide

(B) Propinoaldehyde

(C) Acetone

(D) Propane-1,2-diol


x-x-x

(PHYSICS)

1)	Let u ($(x,y) = x + \frac{1}{2}(x)$	(x^2-y^2)) be the	e real p	art of	analytic	functio	on $f(z)$	of the complex
-		e Z = x + iy, the					•		•	·
	(A)	y + xy (B)	xy	, pu	(C)	y		(D)	$y^2 - x$	· 2
2)		ourth colour ba	-	ziven res		-	what is		-	
•	(A)	10%	(B)	20%		(C)	30%		(D)	40%
3)		lue of the integr		$-\infty \frac{\sin x}{d}$	r is	` '			` ,	
٠,					<i>t</i> 13	(6)	π		(D)	2-:
	(A)	0	(B)			(C)	2		(D)	2πί
4)	In which of the following detector p-n junction diode is used									
	(A) Surface barrier detector (B) GM Counter									
	(C)	Scintillation Co				(D)	•	tional C		
5)	Consid	er an anti-symn	netric te	ensor $oldsymbol{P_{ij}}$, with ir	ndices i	and j ru	unning 1	from 1 t	o 5. The number
	of inde	pendent compo	nents o	f the ten	sor is					
	(A)	3	(B)	10		(C)	9		(D)	6
6)	The source of emission of electrons in a CRT is									
	(A) <i>p-n</i> junction diode									
	(B) Accelerating anode									
	(C) A barium and strontium oxide coated cathode									
	(D)	D) Post-accelerating anode								
7)	Consid	er the linear di	fferentia	al equat	ion $\frac{dy}{dx}$ =	= <i>xy</i> , if	y=2 a	$\mathbf{t} \; x = 0$, then t	he value of y at
		is given by			их					
	(A)	-	(B)	$2e^{-2}$		(C)	e^2		(D)	$2e^2$
8)								nd noise	` '	e level of $1\mu V$. If
•		tage gain of the								
				0	the rath			(N)		
٠,	(A)	4	(B) -2t -	-3t) •		(C)	8		(D)	6
9)	Laplac	transform of $\{e^{i}\}$	r - e	st } is	4			4		
	(A)	$\frac{1}{s^2+3s+6}$ (B)	$\frac{1}{s^2 + 5s +}$	<u>-</u> (C)	$\frac{1}{s-2}$		(D)	$\frac{1}{s+2}$		
10)							natural	line wid	ith of th	e spectral line in
		ission spectrum					_			
	(A)		• •						• •	$10^{-4} eV$
11)										$toms/cm^3$. For
	the giv	en hole mobility	y of 180	$00 cm^2$ /	V. s , T	he resist	ivity of t	he mat	erial is	

	(A)	$0.288~\Omega~cm$	(B)	$0.694~\Omega~cm$	(C)	$3.472~\Omega~cm$	(D)	$6.944~\Omega~cm$		
12)	A gate	with only one in	put and	one output is						
	(A)	an OR gate	(B)	a NOT gate	(C)	a NAND gate	(D)	an AND gate		
13)	In a mi	croprocessor, th	e resist	or which holds t	he addr	ess of the next i	instructi	on to be fetched		
	is									
	(A)	Accumulator			(B)	Program count	er			
	(C)	Stak counter			(D)	Instructor regis				
14)				bit digital to ana	log conv	verter (DAC) wh	ose out-	put varies from		
		+10V, is approx	-							
	(A)	1 mV	(B)	5 mV	(C)	20 mV	(D)	100 mV		
15)	If the r	nemory chip siz	ze is 25	6×1 <i>bits</i> , what	at is the	number of chi	ps requi	red to make up		
		te of memory?						•		
	(A)	32 chips	(B)	64 chips	(C)	128 chips	(D)	256 chips		
4.5\		.	••							
16)	16) The energy of the first excited quantum state of a particle in the two dimensional potential									
	V(x,y)	$=\frac{1}{2}\boldsymbol{m}\omega^2(x^2+$						_		
	(A)	2 ω	(B)	3 ω	(C)	$\frac{3}{2}$ ω	(D)	$\frac{5}{2}$ ω		
17)	17) The quantum mechanical operator for the momentum of a particle moving in one dimension									
	is given	by								
	(A)	$i \frac{d}{dx}$	(B)	$-i \frac{d}{dx}$	(C)	$i \frac{d}{dt}$	(D)	$-\frac{2}{3m}\frac{d^2}{dx^2}$		
12\				article in the pot						
10,										
		$E_n = \left(n + \frac{1}{2}\right)$	211			$E_n = \left(n + \frac{1}{2}\right)$		$i\omega^2$		
	(C)	$E_n = \left(n + \frac{1}{2}\right)$	$\omega - \frac{a}{m}$	2 1) ²	(D)	$E_n = \left(n + \frac{1}{2}\right)$	ω			
19)		\/		ມ- llitude, the diffe		\/		l be equal to		
•				$\frac{ f(\theta,\varphi) ^2}{2}$						
201					(C)	$[f(\sigma, \varphi)]$	(D)	$f(\theta, \varphi)$		
20)		of $\overrightarrow{s_1}$. $\overrightarrow{s_2}$ for two				1.		3		
	(A)	$\frac{1}{4}$ for singlet	(B)	$-\frac{3}{4}$ for triplet	(C)	$\frac{1}{4}$ for triplet	(D)	$-\frac{3}{2}$ for singlet		
21\	The acc	eleration due t	o gravity	u(a) on the sur	face of	earth is annrovi	mately 2	2.6 times that on		
21)								ius of Earth, the		
				Earth to that on						
	(A)	1.1	(B)	1.3	(C)	2.3	(D)	5.2		
22)	If the L	agrangian of a	particle	moving in one	dimens	ion is given by	$L = \frac{\dot{x}^2}{2x} -$	-V(x), then the		

Hamiltonian is

32)	In the [Debye model fo	r a thre	e dimen	sional c	rystal th	e intern	al ener	gy U at I	low temperature		
	is repre	sented by										
	(A)	$U \alpha T$	(B)	$U \alpha T^2$	² (C)	$U \alpha T^3$	(D)	$U \alpha T^2$	ļ			
33)	Sodium	atoms crystall	ic in BC	C meta	l. The a	tomic ra	dius of	sodiun	is 1.8	$6 A^0$. The Fermi		
	energy	of sodium at $oldsymbol{0}$	K is									
	(A)	5.11 eV	(B)	6.01 eV	/ (C)	3.11 eV	(D)	4.21 eV	/			
34)	34) For an ideal Fermi gas in three dimensions, the electron velocity \boldsymbol{V}_F at the Fermi surface is											
	related	to electron con	centrati	on <i>'n'</i> a	S							
	(A)	$V_F \alpha n^{\frac{2}{3}}$	(B)	$V_F \alpha n$	ı (C)	$V_F \alpha n^2$	<u>L</u> 2	(D)	$V_F \alpha n$	<u>1</u> 3		
35)	35) Given that the ground state energy of the hydrogen atom is -13.6 eV. The ground state energy											
of the positronium (which is a bound state of an electron and positron) is												
	(A)	+6.8 eV (B)	-6.8 Ev		(C)	-13.6 Ev	(D)	-27.2 e	V			
26)	An alaa	سمه ممااناهم سن			atom in	ita avarr			aitaa it t			
36) An electron collides with a hydrogen atom in its ground state and excites it to a state of $n = 3$. How much energy was given to the hydrogen atom in this inelastic collision?												
	(A)	13.6 eV (B)	6.8 eV	i to the	(C)	12.1 eV		1.51 eV		•		
				•			•					
37) In deep inelastic scattering electrons are scattered off protons to determine if a proton has												
	any internal structure. The energy of the electron for this must be at least (A) $1.25 \times 10^9 \ eV$ (B) $1.25 \times 10^{12} \ eV$											
	• •	$1.25 \times 10^6 eV$ $1.25 \times 10^6 eV$				1.25 ×						
	• •											
		action $\ _{1}^{1}D+\ _{1}^{1}D$ s the conservation	_	1e + π`	canno	t proce	ed via	strong	interact	tion, because it		
		Angular momer				(B)	Electric	charge				
	(A) (C)	Baryon no	ituiii			(D)	Isospin	ciiaige				
	•	•	+ .	:-	£ - !	-	•					
		ction $e^+ + e^-$				en becau	ise ot					
	(A)	Law of baryon r										
	(B) (C)	Law of muon no				ı						
	(C) (D)	Law of energy of			LIOTI							
					of ite us	at maaa	الد محطد		نام بر هم اد	ah tha mautiala ia		
		_				est mass,	, then tr	ie speed	a at whi	ch the particle is		
		is (where c is the $\sqrt{8}$,			R					
	(A)	$\frac{\sqrt{8}}{3}c$	(B)	$\frac{70}{9}$ C		(C)	$\frac{3}{9}$ C		(D)	3 <i>c</i>		
41)	What is	the approxima	ate Fern	ni Kineti	c energy	y of the	nucleon	s (eithe	r protor	n or neutron) in		
	case of	a self-conjugate	e nuclei	with N=	Z=A/2 ?							
	(A)	33 MeV(B)	150 Me	eV	(C)	0.5 Me\	/	(D)	200 Me	eV		

42	42) According to the shell model, the ground state spin of the $^{13}_{6}\mathit{C}$ nucleus is										
	(A)	$\frac{1}{2}$	(B)	$\frac{3}{2}$	(C)	<u>5</u> 2	(D)	$\frac{7}{2}$			
12	\ \Which	of the following	a staton	nent is not corre	ct for a	compound nu	clear reac	tion			
43	(A)		_	action is symmet		-	lear reac	tion.			
	(A) (B)	-		action is symme ained in case of o		_	tion is sw	mmotric			
					•		Lion is sy	iiiietiit			
	(C)	-		peak around the	_						
44	(D) Light ion induced compound nuclear reaction follow Bohr's independence hypothesis										
44) The neutron and proton form a deuteron bound state which is stable, while there is no bound state for two neutrons because											
	(A)	Nuclear forces	are sati	urated							
	(B)	Nuclear forces	are spii	n dependent							
	(C)	Nuclear forces are charge dependent									
	(D)	D) Nuclear forces depend upon magnetic moment									
45) Let E_s denotes the contribution of the surface energy per nucleon in the Liquid drop model.											
		tio $E_s({}^{27}_{13}Al):$									
	(A)	, - ,	•	4:3	(C)	5:3	(D)	3:1			
46) A syst	em of N non-ii	nteracti	ng classical poi	nt parti	cles is constra	ined to	move on the two			
	_			re. The internal	-						
	(A)	$\frac{3}{2} NK_BT$	(B)	$\frac{1}{2} NK_BT$	(C)	NK_BT	(D)	$\frac{5}{2} NK_BT$			
47) Consid	ler a system of 3	3 fermio	ons which can o	сиру а	ny of the four a	vailable (energy states with			
	equal	probability. The	entrop	y of the system	is						
	(A)	$K_B ln2$	(B)	$2K_B ln2$	(C)	$2K_B ln4$	(D)	$3K_B \ln 4$			
48				hat temperature							
	(A)	Ferromagnetic		(B)	Electr	rically conductir	ng				
	(C)	Superconducti	ing		(D)	Radioactive					
49) The nu	ımber of ways i	n which	N identical boso	ons can	be distributed	in two en	ergy level is			
	(A)	N+1	(B)	$\frac{N(N-1)^2}{2}$	(C)	$\frac{N(N+1)}{2}$	(D)	N			
50				a first order pha		-	(-)				
30	(A)		_	•		31011					
	(A) (B)	Vaporization of a liquid at its boiling point Ferromagnetic to paramagnetic									
	(C)	Normal liquid He to super-fluid He									
		•		•							
	(D)	Superconducting to normal state									

(GEOLOGY)

1.	As per the Rule of V's the outcropping strata that intersects the contours in general will show a V pointing upstream when the											
	(A)	Strata dips u			(B)	Strata is hori						
	(C)	Strata is Ver	-		(D)	Strata dips d	ownstre	eam				
2.		limb of a fold	-			-	45 ⁰ due	• N45 ⁰ W. W	Vhat			
	(A)	East	(B)	West	(C)	South	(D)	North				
3.		is a	strike s	lip fault with	a vertical	fault surface						
	(A)	Pivotal Fault			(B)	Detachment	Fault					
	(C)	Wrench Faul	t		(D)	Gravity Faul	lt					
4.	The a	The absence of hydrous minerals and presence of pyroxenes characterises										
	(A)	Greenschist		•	(B)	Blueshist fac						
	(C)	Amphibolite	facies		(D)	Granulite fac	cies					
5.	Boug	uer anomaly (n	ngal) ald	ong oceanic ri	dges rang	ges between						
	(A)	-20 and -30			(B)	-200 and -30	00					
	(C)	+200 and +2	50		(D)	-10 and -50						
6.	Diamond bearing kimberlites are found in the tectonic setting of											
	(A)	Continental 1			(B)	Foreland Ba						
	(C)	Oceanic ridg	es		(D)	Cratons and Passive margins						
7.	Sensitive High Resolution Ion Micropobe (SHRIMP) is used for											
	(A)	U-Pb Dating		•	(B)	REE Geochemistry						
	(C)	Isotope Geod	chemistr	у	(D)	Fission Track Dating						
8.	Which among the following contains Thorium?											
	(A)	Glauconite	(B)	Perthite	(C)	Monazite	(D)	Coffinite				
9.			is an ult	tramafic intrus	sive rock	similar to peri	idotite					
	(A)	Eurite	(B)	Picrite	(C)	Troctolite	(D)	Allivalite				
10.		is a n	nelanocr	itic picritic ba	ısalt.							
	(A)	Oceanite	(B)	Saxonite	(C)	Lherizolite	(D)	Izolite				
11.	The stratigraphic Law of faunal succession was developed by											
	(A)	Niels Steno			(B)	William Sm						

	(C)	James Hutton	l		(D)	Charles Lyel							
12.	Biotit	te is											
	(A)	Uniaxial posi	tive		(B)	Biaxial positi	ve						
	(C)	Uniaxial nega	ative		(D)	Biaxial negat	ive						
13.	Olivi	ne shows											
	(A)	1 st order inter	ference	colours	(B)	2 nd order inte	rference	e colours					
	(C)	3 rd order inter	ference	colours	(D)	4 th order inter	rference	colours					
14.	Whic	h among the fol	lowing	contains Arse	enic?								
	(A)	Chalcopyrite			(B)	Chalcocite							
	(C)	Realgar			(D)	Covelite							
15.	Khon	Khondalite rock contains which of the following assemblage											
	(A) Quartz-Orthoclase-Hypersthene												
	(B) Plagioclase-Orthoclase-Hypersthene												
	(C)												
	(D)	Quartz-Haem	atite-H	ypersthene									
16.	Whic	h one is a metar	norphic	texture									
	(A)	Lepidoblastic	(B)	Graphic	(C)	Clastic	(D)	Aphinitic					
17.	Which among the following orders survived the K-T boundary?												
	(A)	Ceratitids			(B)	Nautilids							
	(C)	Goniatitids			(D)	Ammonitids							
18.	Which one of the following belongs to the oldest trilobite order Redlichiida.												
	(A)	Asaphus	(B)	Olenellus	(C)	Agnostus	(D)	Phacops					
19.		is	a air br	eathing fresh	water gas	stropod.							
	(A)	Turbo	(B)	Natica	(C)	Physa	(D)	Crepidula					
20		***	onlea the	a haainnina a	f Combui	0.70							
20.	(A)	m Agnostus	(B)	Asaphus	(C)	an Treptichnus	(D)	Olenus					
	(11)	11811031113	(D)	пзарниз	(0)	теристи	(D)	Otenus					
21.		is		-		12		12					
	(A)	¹⁸ O	(B)	²⁶ Al	(C)	¹² C	(D)	¹³ C					
22.	Earth	s obliquity cycl	e (axial	tilt) occurs ev	very								
	(A)	10,000 years			(B)	21,000 years							
	(C)	41,000 years			(D)	100,000 years							

23.		is considered one the first chordates.										
	(A)	Lingula			(B)	Pikaia						
	(C)	Redlichia			(D)	Terebratula						
24.			is a bios	tratigraphic zo	one that d	leals with high	abundaı	nce of a taxa				
	(A)	Lineage Zo	ne		(B)	Concurrent Z	Zone					
	(C)	Acme Zone	;		(D)	Assemblage 2	Zone					
25.	A ma	rked lack of c	oal depo	sits all over th	ne world i	s related to						
	(A)	End Ordovi	cian Exti	inctions	(B)	End Devonia	n Extin	ctions				
	(C)	Permian-Tr	iassic Ex	tinctions	(D)	Cretaceous-Tertiary Extinctions						
26.	The I	The Paleocene–Eocene Thermal Maximum (PETM) occurred around										
	(A)	35 Ma	(B)	45 Ma	(C)	55 Ma	(D)	65 Ma				
27.	Ediac	Ediacara Biota found in India occur in the										
	(A)	Aravalis	(B)	Dharwas	(C)	Gondwanas	(D)	Vindhyans				
28.	Age	of the Deccan	Traps is.									
	(A)	100 Ma	(B)	66 Ma	(C)	45 Ma	(D)	150 Ma				
29.	As pe	As per Conodont Alteration Index the colour dark grey denotes temperature between										
	(A)	$50-80^{0}$ C	(B)	$60-140^{0}$ C	(C)	$110-300^{0}$ C	(D)	$190-300^{0}$ C				
30.	Spectral logging comes under											
	(A)	Density Lo	gging									
	(B)	Gamma Ra	y Loggin	g								
	(C)	Resistivity	Logging									
	(D)	Nuclear Ma	ignetic R	esonance Log	gging							
31.	Inat	vnical Rouma	Saguana	o the Poume	D lover	is deposited und	dor					
31.	(A)	Very slight	-		(B)	No turbidity		•••				
	(A) (C)	High energy	•		(D)	•		bidity current				
				-	` /			oldity current				
32.						today is around						
	(A)	100 Ma	(B)	450 Ma	(C)	180 Ma	(D)	55 Ma				
33.	The C	Galapagos Tri	pple Junc	ction is an exa	imple of .	trij	pple jun	nction				
	(A)	Fault-Fault-	Ridge		(B)	Fault-Fault-T	rench					
	(C)	Ridge-Ridg	e-Ridge		(D)	Ridge-Trench	h-Fault					

34.	Kerguelen Hotspot is the source of										
	(A)	Deccan Traps	(B)	Panjal Traps							
	(C)	Malani Igneous Suite	(D)	Rajmahal Traps							
35.	The h	nyper-impact Lonar Crater is form	med in								
	(A)	Granitic Rock	(B)	Basaltic Rock							
	(C)	Rhyolic Rock	(D)	Gneissic Rock							
36.		is a supercontin	ent that exist	ted from ~550 Ma to ~180 Ma.							
	(A)	Laurasia	(B)	Gondwanaland							
	(C)	Columbia	(D)	Rodinia							
37.	Evide	ence of Iridium anomaly relat	ted to K-T b	boundary has been recorded from the							
		n state of		•							
	(A)	Madhya Pradesh	(B)	Meghalaya							
	(C)	Karnataka	(D)	Andhra Pradesh							
38.		are the joints that	are approxim	ately perpendicular to the fold axis.							
	(A)	Pinnate joints	(B)	Conjugate joints							
	(C)	Cross joints	(D)	Sigmoidal joints							
39.	The first appearance of the horse <i>Equus</i> in the Siwaliks is at										
	(A)	5.5 Ma (B) 2.6 Ma	(C)	8.4 Ma (D) 3.5 Ma							
40.	The C	The Global Stratotype Section and Point of Neogene-Quaternary Boundary is located									
	in	····									
	(A)	Guryul Ravine, Kashmir Valle	ey, India								
	(B)	Chicxulub, Mexico									
	(C)	El-Kef, Tunisia									
	(D)	Monte San Nicola Section, Ita	ly								
41.		single celled alga	ae with cell w	rall made up of silica.							
	(A)	Acritarchs	(B)	Dinocysts							
	(C)	Diatoms	(D)	Chitinozoans							
42.		materials a	re non-magn	netic when a magnetic field is absent							
	and n	nagnetic when a magnetic field i	s applied.								
	(A)	Ferromagnetic	(B)	Paramagnetic							
	(C)	Ferrimagnetic	(D)	Antiferrimagnetic							

Dharamsala Formation underlies												
(A)	Subathu Formation	on	(B)	Dagshai For	mation							
(C)	Kasauli Formatio	on	(D)	Siwalik Gro	up							
The c	oldest dates that can	be reliably measure	ed usi	ng Radiocarbor	n method	l is						
(A)	100,000 yrs (B) 500,000 yrs	(C)	50,000 yrs	(D)	500 yrs						
Base	and precious metal	deposits are usually	y associated with									
(A)	Divergent Plate b	ooundaries	(B) Convergent Plate boundaries									
(C)	Transform faults		(D) Transcurrent Faults									
	_	Iron, Manganese	and	Aluminium s	silicates	are commonly						
` ′	-		, ,	-								
(C)	Placer deposits		(D)	Evaporite de	posits							
Pterosaurs were flying												
(A)	Birds (B	B) Mammals	(C)	Reptiles	(D)	Dinosaurs						
The southernmost Fault that runs along the Himalayas is called												
(A)	Main Boundary 7	Γhrust	(B)	Main central	Thrust							
(C)	Himalayan Front	al Thrust	(D)	Nahan Thrus	st							
	1	is bounded by m	aximu	ım flooding s	surface	at the top and						
		· ·		C		1						
(A)	High Stand Syste	em Tract	(B)	Low Stand S	System T	ract						
(C)	Transgressive Sy	stem Tract	(D)	Regressive System Tract								
The c	collision of India wi	th Asia took place s	someti	me between								
(A)	20-15 Ma	1	(B)	85-75 Ma								
(C)	65-35 Ma		(D)	200-100 Ma								
	(A) (C) The of (A) Base (A) (C) Calcia associ (A) (C) Ptero (A) The s (A) (C) maxim (A) (C) The of (A)	(A) Subathu Formatic (C) Kasauli Formatic (C) Kasauli Formatic (C) Kasauli Formatic (A) 100,000 yrs (C) Base and precious metal (A) Divergent Plate be (C) Transform faults Calcium, Magnesium, associated with (A) Skarn deposits (C) Placer deposits Pterosaurs were flying (A) Birds (E) The southernmost Fault (A) Main Boundary (C) Himalayan Front maximum regressive sur (A) High Stand Syste (C) Transgressive Syste (C) Transgressive Syste (A) 20-15 Ma	(A) Subathu Formation (C) Kasauli Formation The oldest dates that can be reliably measure (A) 100,000 yrs (B) 500,000 yrs Base and precious metal deposits are usually (A) Divergent Plate boundaries (C) Transform faults Calcium, Magnesium, Iron, Manganese associated with (A) Skarn deposits (C) Placer deposits Pterosaurs were flying	(A) Subathu Formation (B) (C) Kasauli Formation (D) The oldest dates that can be reliably measured using (A) 100,000 yrs (B) 500,000 yrs (C) Base and precious metal deposits are usually associated (A) Divergent Plate boundaries (B) (C) Transform faults (D) To (C) Calcium, Magnesium, Iron, Manganese and associated with (A) Skarn deposits (B) (C) Placer deposits (D) Pterosaurs were flying	(A) Subathu Formation (C) Kasauli Formation (D) Siwalik Growth (C) Kasauli Formation (D) Siwalik Growth (D) Siwalik Growth (D) Siwalik Growth (D) Siwalik Growth (D) The oldest dates that can be reliably measured using Radiocarbor (A) 100,000 yrs (B) 500,000 yrs (C) 50,000 yrs (D) 50,000 yrs	(A) Subathu Formation (C) Kasauli Formation (C) Kasauli Formation (C) Kasauli Formation (D) Siwalik Group The oldest dates that can be reliably measured using Radiocarbon method (A) 100,000 yrs (B) 500,000 yrs (C) 50,000 yrs (D) Base and precious metal deposits are usually associated with (A) Divergent Plate boundaries (B) Convergent Plate bounds (C) Transform faults (D) Transcurrent Faults Calcium, Magnesium, Iron, Manganese and Aluminium silicates associated with (A) Skarn deposits (B) Gossan deposits (C) Placer deposits (D) Evaporite deposits Pterosaurs were flying						

Home Science(Ph.D.)

1.	Which of the following statements is not true?											
	(A)	Growth is a	biologic	al process								
	(B)	B) Development is a quantitative process										
	(C) Education is a goal-oriented process											
	(D)		_	s of behavioura		es						
2.	Ident	Identify the term related to flower arrangement.										
	(A)	Feng Shui	(B)	Ying-Yang	(C)	Ikebana	(D)	Alpana				
3.	Rese	Researcher wants to test the association of female literacy on infant feeding practices										
	Whic	ch of the follow	ing test	of significance	e is the r	nost appropria	ate for thi	is?				
	(A)	F-test			(B)	Chi-square	test					
	(C)	't' test			(D)	Mann-Whit	ney test					
4.	Whic	ch of the follow	ing is n	ot an Embroide	ery Stite	h?						
	(A)	Dabka	(B)	Menthi	(C)	Phanda	(D)	Murri				
5.		is claimed to be father of modern management										
	(A)	Henry Fayo	l		(B)	Frederick T	aylor					
	(C)	Gross & Cra	andall		(D)	Nickel & D	orsey					
6.	Recommended dietary allowances for Indians are given by											
	(A)	ICAR	(B)	ICSSR	(C)	CSIR	(D)	ICMR				
7.	The g	The greatest resource in extension work is										
	(A)	Money			(B)	Local mater	rial					
	(C)	Local people	e		(D)	Contacts wi	ith high c	officials				
8.	Mear	n, Median and	Mode ar	e:								
	(A)	Deviation			(B)	Ways of sar	mpling					
	(C)	Measures of	Central	tendency	(D)	Hypothesis						
9.	Whic	ch of the follow	ing is a	double pointed	l dart?							
	(A)	Flange	(B)	French	(C)	Fish	(D)	Dressmakers				
10.	Rhyt	Rhythm is created through										
10.	(A)	Proportion	(B)	Repetition	(C)	Harmony	(D)	Balance				

11.	•	ung child's ina	erspecti	ve from others'						
	(A)	Egocentrism			(B)	Centration				
	(C)	Irreversibility	of thou	ight	(D)	Identity const	tancy			
12.	Which	h of the following	ng does	not represent l	Kasuti E	Embroidery?				
	(A)	Menthe	(B)	Aari	(C)	Ganti	(D)	Murgi		
13.	NCPO	CR is an autonoi	mous bo	ody which stan	ds for					
	(A)	National Com	missio	n for Protection	of Chi	ld Rights				
	(B)	National Cour	ncil for	Prevention and	d Contro	ol of Reproduc	tion			
	(C)	National Com	missio	n for Poverty co	ontrol a	nd Relief				
	(D) National Council for Preschool, Creche and Research									
14.	14. If a researcher wants to predict with 99% accuracy he would set the level of significance									
at										
	(A)	.05	(B)	.95	(C)	.01	(D)	.10		
15.	universal statement is called									
	(A) (C)	Deductive Re	_		(B) (D)	Inductive Reasoning Transcendental Reasoning				
	(C)	Abnormal Rea	asoming	,	(D)	Transcendent	ai Keas	oming		
16.	Socio	metry is a tool t	o meas	ure child's						
	(A)	Intelligence le	evel		(B)	Behaviour pro	oblems			
	(C)	Relationship v	with peo	ers	(D)	Relationship	with pa	rents		
17.		microorganisms l as	s simila	r to beneficial	microc	organisms foun	d in the	e human gut are		
	(A)	Prebiotics	(B)	Probiotics	(C)	Antibiotics	(D)	Symbiotics		
18.	'AGI	MARK is a certi	ificate r	nark employed	on					
	(A)	Poultry & fish	neries p	roducts	(B)	Agriculture P	roducts			
	(C)	Vegetables	-		(D)	Fruits				
19.	Which	h of the following	ng is no	t a plain weave	e?					
	(A)	Percale	(B)	Calico	(C)	Drill	(D)	Chintz		

20.	-	Compared with mail questionnaires the principal advantage of the personal interview is											
	that it												
	(A)	Low cost											
	(B)	Depth of info	ormatio	n collected									
	(C)	Objectivity											
	(D)	High reliabil	ity of ir	formation colle	cted								
21.	A chi	ld with average	e intelli	gence has an IQ	of								
	(A)	70-79	(B)	80-89	(C)	90-109	(D)	110-119					
22.	Exten	Extension Education is the education for the betterment of people for changing their											
	(A)	Behaviour	(B)	Status	(C)	Income	(D)	Values					
23.	Whic	Which of the following is not a hand printing technique?											
	(A)	Duplex	(B)	Screen	(C)	Block	(D)	Stencil					
24.	Gluten free diet is given to patients with												
	(A)	Crohn's Dise	ase		(B)	Celiac Diseas	se						
	(C)	Irritable Bow	el Dise	ease	(D)	Liver Disease	e						
25.	The p	eriod of humar	n embry	o is									
	(A)	2-4 weeks	·		(B)	1 - 8 weeks							
	(C)	2 - 8 weeks			(D)	2-6 weeks							
26.	Mate	Material used for insulation, radio cabinets and handles etc. is											
	(A)	Bakelite	(B)	Plastic	(C)	Rubber	(D)	Fiber					
27.		Which of the following garment finishers is used for finishing number of garments together?											
	(A)	Form Press	(B)	Tunnel	(C)	Buck Press	(D)	Die Press					
28.	One o	of the most effe	ctive m	ethods of impar	ting sk	ill is							
	(A)	Field Visit			(B)	Group Discus	ssion						
	(C)	Demonstration	on		(D)	Project							
29.	'Allin	ı' is a compoun	nd found	d in									
	(A)	Garlic	(B)	Turmeric	(C)	Cinnamon	(D)	Cloves					
30.	A rep	resentative san	nple is ι	used so that the	results	of a study are							
	(A)	Reliable	(B)	Generalized	(C)	Convenient	(D)	Limited					

31.	The fact that motor control of the arms precedes control of the legs is an example of											
	(A)	Secular trend			(B)	Cephalo-caudal trend						
	(C)	Proximal-dist	al tren	d	(D)	Evocative tre	nd					
32.	Which of the following is not a cool colour?											
	(A)	Bluish green	(B)	Yellow oran	ge(C)	Blue	(D)	Green				
33.	Area,	, line, pictoral, p	oie are	the types of -								
	(A)	Charts	(B)	Posters	(C)	Graphs	(D)	Diagrams				
34.	Following fat is the richest source of MUFA:											
	(A)	Sunflower Oi	1 (B)	Soyabean Oi	il (C)	Coconut Oil	(D)	Olive Oil				
35.	Qualitative Research is used in the situations											
	(A)	•										
	(B)	•										
	(C)	Where pheno	menon	under study is	nomina	.1						
	(D)	Where it is no	ot poss	ible to measure	the phe	enomenon and re	espons	es are subjective				
36.	is an intense educational activity for motivating and mobilizing a communit											
	to act	tion.										
	(A)	Brainstorming	g (B)	Colloquium	(C)	Campaign	(D)	Symposium				
37.	Anti-ageing vitamin is											
	(A)	Vitamin E	(B)	Vitamin K	(C)	Vitamin B ₁₂	(D)	Vitamin A				
38.	DRD	A is functioning	g at									
	(A)	District level	(B)	Block level	(C)	Village level	(D)	State level				
39.	Urie	Bronfenbrenner	's theo	ry is								
	(A)	Humanistic p	erspect	tive	(B)	Sociobiology						
	(C)	Ecological Sy	stems	Theory	(D)	Socio-cultura	l Theo	ry				
40.	Type	-I Error occurs i	f									
	(A)	Null hypothes	sis is re	ejected even the	ough it i	s true						
	(B)	Null hypothes	sis is a	ccepted even th	ough it	is false						
	(C)	Both the null	hypoth	nesis as well as	alternat	ive hypothesis a	are reje	cted				
	(D)	Both the null	hypoth	nesis as well as	alternat	ive hypothesis a	are acc	epted				

41.	• The occurrence of the first menstrual period is known as								
	(A)	Menopause	(B)	Menogenesis	(C)	Puberty	(D)	Menarche	
42.	Hallm	ark is a standar	dized ce	ertification of					
	(A)	Jewellery			(B)	Eco friendly products			
	(C)	Electrical app	liances		(D)	Canned Food			
43.	This n	utrient is neede	ed for a	healthy immun	e systen	n and strong co	nnectiv	e tissue	
	(A)	Fiber	(B)	Vitamin K	(C)	Vitamin C	(D)	Fluoride	
44.	While	washing cottor	n fabrics	s, colour can be	preven	ted from bleach	ning by	using	
	(A)	Vinegar			(B)	Common Salt			
	(C)	Sodium Carbo	onate		(D)	Lissapol			
45.	Bread	vinegar, wine a	nd beer	are produced v	vith the	help of			
	(A)	Mould	(B)	Bacteria	(C)	Yeast	(D)	Enzymes	
46.		is a traditio	nal luxu	iry ornamental	handicr	aft of Kashmir			
	(A)	Madhubani	(B)	Papier-mache	(C)	Modak	(D)	Alpana	
47.	The A	ct which gover	ns Cons	sumer Disputes	Redres	sal Forum is			
	(A)	The Bureau or	f indian	Standard Act	(B)	The consumer	Protect	tion Act	
	(C)	The Trade Me	erchandi	ise Mark Act	(D)	Restrictive Tra	ade Pra	ctises Act	
48.	8th M	arch is celebrate	ed as						
	(A)	International l	Environ	ment Day	(B) Int	ternational Sani	itation I	Day	
	(C)	International '	Women	's Day	(D)	International	Energy	Day	
49.	Which	n of the following	ng is no	t a stretch fiber	?				
	(A)	Neoprene	(B)	Spandex	(C)	Elastane	(D)	Viscose	
50.	In a no	ormally distribu	ited pop	oulation, Mean -	+ 1.96 \$	S.D. will cover	0	of population.	
	(A)	90%	(B)	95%	(C)	98%	(D)	99%	
				vvv					

Human Genomics (Ph.D.)

- 1. Which of the following is the correct reason why liquid media is favoured for culturing thermophilicarchaea?
 - (A) Liquid media can be heated to higher temperatures
 - (B) Liquid media is easier to store
 - (C) Solid media is usually unstable at optimum growing temperatures
 - (D) Solid media becomes glass-like at high temperatures
- 2. Which of the following microscopy techniques relies on the specimen interfering with the wavelength of light to produce a high contrast image without the need for dyes or any damage to the sample?
 - (A) Conventional bright field light microscopy
 - (B) Phase contrast microscopy
 - (C) Electron microscopy
 - (D) Fluorescence microscopy
- **3.** With respect to their surrounding membrane system, which is the odd one out?
 - (A) Nucleus

(B) Endoplasmic reticulum

(C) Mitochondria

(D) Chloroplasts

- **4.** Within the nucleus, individual chromosomes are thought to occupy discrete territories. Which of the following is most likely to promote this segregation?
 - (A) Nuclear lamina

(B) Nuclear pore complexes

(C) Nuclear matrix/scaffold

(D) Intermediate fibres

5. The base adenine (A. of the DNA of the fungus Neurosporacrassa forms 23.3 % of its composition. Which of the following is the most likely base composition of the genome, given C is cytosine, G guanine and T thymine?

(A)
$$A = T = 23.3 \%$$
 and $G = C = 23.3 \%$ (B)

$$A = C = 26.7 \%$$
 and $G = T = 26.7 \%$

(C)
$$A = T = 23.3 \%$$
 and $G = C = 26.7 \%$ (D)

$$A = T = 26.7 \%$$
 and $G = C = 23.3 \%$

- A population of cells grown in adherent culture contains 0.4 mg protein per 106 cells. Actin comprizes 4.5 % of the total protein. Given the Mr of actin is 42 000 and Avogadro's number is 6.02 x 1023, which of the following equals the mean number of actin molecules per cell?
 - (A) 2.58 x 1014 actin molecules

(B) 2.58 x 1011 actin molecules

(C) 2.58 x 108 actin molecules

(D) 2.58 x 1010 actin molecules

- 7. What would the generally expected effect on the PCR reaction be of adjustments that increase the temperature of the annealing phase and the length of the elongation phase?
 - (A) Precision and yield will be reduced
 - (B) Precision will be reduced, but yield will be increased
 - (C) Precision will be increased, but yield will be reduced
 - (D) Precision and yield will be increased

8.	In principle, what outcome would be least expected in a failure to separate pre-PCR and post-PCR activities?									
	(A)	False positive reactions	(B)	False negative reactions						
	(C)	Mixed or non-specific PCR products	s (D)							
9.	shorte (A)	What would the expected effect be on a PCR reaction if the primers used were slightly shorter and more variable than the intended oligonucleotide sequences? (A) The PCR reaction would not commence (B) The PCR reaction would end after one cycle								
	(C)	The reaction would generate a single	-							
	(D)	The reaction would yield a mixture		1						
10.	templ	ate should give optimum results for th								
	(A)	Genomic DNA	(B)	PCR product						
	(C)	Bacterial artificial chromosome	(D)	Plasmid DNA						
11.	Once the sequences are obtained from your Next Generation Sequencing experiment what is the first thing you should do? (A) Perform a bioinformatics analysis of your data (B) Check your data using a different method (C) Publish your results (D) Further investigate the sequences of interest									
12.	Which	0 0 1	ins inte	eracts with DNA in a sequence specific						
	(A)	Histone H3	(B)	DNA polymerase						
	(C)	NF-kB	(D)	RNA polymerase						
13.	Which of the following is an equilibrium method that can be used to accurately determine DNA-protein dissociation constants?									
	(A)	Site directed mutagenesis	(B)	Chromatin Immunoprecipitation						
	(C)	ELISA	(D)	Footprinting						
14.		EMSA experiment free DNA is separ which following principle?	ated fro	om protein-DNA complexes in a native						
	(A)	Charge	(B)	Molecular weight						
	(C)	DNA digestion with DNAse	(D)	Antibody immunoprecipitation						
15.		all regulatory RNAs: siRNA and miR	NA?	on between the origin of the two classes asm; miRNAs originate from the cell						

genome

(B)	siRNAs originate from predominantly exogenous dsRNA; miRNAs originate from
(C)	the cell genome miRNAs are expressed whenever siRNAs are unable to appropriately degrade
would	sequences miRNAs are processed from dsRNA viruses, siRNAs are processed from ssRNA viruses application where you require a sample of your target protein at high purity, what d be a good purification strategy? Assume that your starting point is E. coli cells in a the target protein fused to an affinity tag has been over-expressed. Affinity chromatography (AC. followed by size exclusion chromatography (SEC. AC only AC followed by ion-exchange (IEX) followed by SEC AC followed by IEX, followed by hydrophobic interaction (HIC. and then SEC
	h of these techniques is often considered a suitable "polishing" step in a protein cation strategy? Affinity chromatography (AC) Ion-exchange chromatography (IEX) Hydrophobic interaction chromatography (HIC) Size-exclusion chromatography (SEC)
	properties of a protein does hydrophobic interaction chromatography exploit for cation? Charged amino acids Hydrophobic amino acids on the protein surface Molecular weight Enzyme activity
In the gene (A) (B) (C) (D)	yeast two-hybrid system, which of the following statements is accurate: A reporter Is fused to the activation domain of a transcription factor Is fused to the DNA binding domain of a transcription factor Requires the presence of Histidine in the growth medium for its expression Is expressed only if the tested protein interaction occurs
experi (A) (C)	h of the following types of genetic manipulations allow a researcher to imentally increase gene expression in a mouse model? Knockin (B) Conditional knockout Transgenic (D) Knockout h one of the following elements is least likely to participate in a hydrogen bond? O (B) F (C) S (D) N

RNA

16.

17.

18.

19.

20.

21.

22.	Which one of the following terms describes a positive and negative charge, which are separated in space within a molecule?								
	(A) (C)	Salt bridge Dipole	(B) (D)	Polar bond Van der Waals	intera	ction			
23.		nolar mass of an element is equal to w		_					
	(A) (C)	Avogadro's number Mass number	(B) (D)	Atomic numbe Relative atomic		•			
	(0)	Wass named	(D)	relative atomi	c mass	,			
24.	dilute	If we begin with 8 mL of a glucose solution with a concentration of 0.25 mol L-1 and dilute it to a volume of 0.5 L, what is the concentration of the final, diluted solution?							
1	(A)	250 mol L-1 (B) 4 mol L-1	(C)	0.004 mol L-1	(D)	0.0025 mol L-			
25.	-	one amino acid has two identical ground following amino acids is it?	ups atta	ched to its centra	al carb	on atom. Which			
	(A)	Alanine (B) Valine	(C)	Glycine	(D)	Cysteine			
26.	A beta-barrel is an example of what level of structure?								
	(A)	Primary structure	(B)	Secondary stru					
	(C)	Tertiary structure	(D)	Quaternary stru	ucture				
27.		finger motifs are a particular chara- ving functions? Biochemical catalysis (The proteins Formation of the cell cytoskeleton (Gene regulation (The proteins are D Signal transduction across the cell proteins)	are enz The pro NA-bir	cymes) teins are structurading proteins)	ral pro	teins)			
28.		+ associates with the enzyme lactate	•	-	alyse 1	the oxidation of			
		e. What term is used to describe NAD							
	(A) (C)	Prosthetic group Functional group	(B) (D)	Coenzyme Intermediate					
29.	is fals								
reaction	(A)	The Gibbs free energy change is	the pro	oportion of the	entnai	py change of a			
100001		that is used to increase the entropy							
	(B)	If the Gibbs free energy change for spontaneously	r a read	ction is negative	the r	reaction happens			
	(C)	The Gibbs free energy is represente	•	•					
	(D)	A reaction with a negative Gibbs exergonic reaction	tree en	nergy change of	react	ion is called an			

30.	Consider the binding of a protein and its ligand, represented by the expression $P + L \leftrightarrows PL$.									
	Which	n of the following	ng state	ments in relation	on to th	is binding proc	ess is tr	ue?		
31.	(A) The expression for the dissociation constant, Kd, is (B) A small value of Kd tells us that the protein and ligand bind tightly (C) If binding is strong, the association reaction lies to the left (D) If binding is weak, the dissociation reaction lies to the left Which of the following statements regarding enzymes is false? (A) A given enzyme catalyses just one type of reaction									
	 (A) A given enzyme catalyses just one type of reaction (B) While most enzymes are proteins, some are composed of RNA (C) The activity of enzymes is typically impaired at high temperatures (D) Enzymes act to lower the activation energy of a reaction by stabilising the 									
transit	ion									
		state, but do n	ot parti	cipate chemica	lly in th	ne reaction				
32.	Which one of the following statements regarding Vmax and K _M is false? (A) Vmax is the maximum rate at which a particular enzyme-catalysed reaction can proceed									
	(B) $K_{\rm M}$ is the concentration of substrate at which the rate of the reaction reaches									
Vmax	(G)		0.77	. 11				•		
	(C) (D)				•	e binds strongly me shows little		icity for a given		
33.	Which molec		ing tech	nniques is used	to stuc	dy the three-dir	mension	al structure of a		
	(A) (C)	Infra-red spec UV-visible sp	-	•	(B) (D)	-	Mass spectrometry X-ray crystallography			
34.	odd ga		ing'. The	e F1 animals al	1 show			breeding for an s the most likely		
	()	1,0	(2)	17 .	(0)	<i>5,</i> 1	(2)			
35.	In goats, being polled (hornless) is dominant to being horned. What are the genotypes of polled parents that give birth to a kid which subsequently grows horns? (A) Homozygous dominant for polled allele (B) Homozygous recessive for polled allele (C) Heterozygous for polled allele (D) Impossible to know									
36.	What (A)	would be the pr	robabili (B)	ty that the five 1/64	childre (C)	n in a family ar 1/25	e all bo (D)	ys? 1/16		
37.	The as	ssociation of his Transcription			some i	ndicates which	of the f	following?		

	(B)	DNA replication is occurring									
	(C)	The DNA is condensed into a 30nm	fibre								
	(D)	(D) The DNA double helix is exposed									
38.	When	a calculating a LOD score why do the	values	vary?							
	(A)	They vary according to both the independent assortment used in the		of recombination and the level of							
	(B)	*									
	. ,	 (B) They vary according to the level of independent assortment used in the calculation (C) They vary according to the level of recombination used in the calculation 									
	(D)	The values never vary	CCOIIIC	mation used in the calculation							
39.	Which of the following is the main base methylated in mammalian DNA by the action of										
37.		DNA methylase?									
	(A)	7-methyl guanine	(B)	5-methyl cytosine							
	(C)	Methyl adenine	(D)	Thymine							
40.	To w	To which of the following types of sequence does most of the human genome belong?									
	(A)	Pseudogenes	(B)	Genes							
	(C)	Tandem repeat sequences	(D)	Interspersed repeat sequences							
41.	Which inherited human disorder results from mutations in the nucleotide excision repair system?										
	(A)	Huntingdon disease	(B)	Myotonic dystrophy							
	(C)	Hypermutability syndrome	(D)	Xerodermapigmentosum							
42.	What is the basis of the mutagenic action of the base analogue bromouracil?										
	(A)	It replaces T and binds with G	(B)	It replaces G and binds with T							
	(C)	It replaces T and binds with C	(D)	It replaces A and binds with C							
43.	In tropical areas where malaria is prevalent, people who have one allele for beta thalassemia have a selective advantage over people who have no or two alleles for beta thalassemia. What is this an example of?										
	(A)	Frequency dependent selection	(B)	Diversifying selection							
	(C)	Hybrid vigour	(D)	Heterozygous advantage							
44.	On w	hat does natural selection act?									
	(A)	Phenotype									
	(B)	Genotype									
	(C)	A population's gene pool									
	(D)	Homozygous dominant and heterozy	ygous i	ndividuals							
45.	Whic	h of the following strategies can ens	sure pro	oduction of a cloned human gene in a							
	bacte	rium?									
	(A)	Use of a fusion plasmid/human vira									
	(B)	Additional insertion of a human original	gin of r	eplication							
	(C)	Cloning into a RNA phage									
	(D)	Insertion of the cDNA sequence									

- **46.** Why do molecular biologists sometimes compare cytochrome oxidase I sequences from different sources?
 - (A) To investigate gene function
 - (B) To identify stem cells
 - (C) To investigate evolutionary relationships
 - (D) To map genes
- **47.** Which of the following occurs during pyrosequencing?
 - (A) Dideoxynucleotides release fluorescent bases
 - (B) Dideoxynucleotides are incorporated and terminate DNA synthesis
 - (C) A released dideoxynucletode generates a fluorescent signal
 - (D) A released pyrophosphate generates a fluorescent signal
- **48.** Which of the following occurs when a knockout mouse is produced?
 - (A) A mutant gene is replaced by a functional allele
 - (B) A functional gene is replace by a mutant allele
 - (C) A functional gene is inserted in addition to the mutant allele
 - (D) A mutant gene is inserted in addition to the functional allele
- **49.** For which of the following is PCR not used?
 - (A) Site specific mutagenesis
 - (B) To generate double stranded DNA for DNA sequencing
 - (C) To generate copies of microsatellites for DNA fingerprinting
 - (D) To generate cDNA from mRNA
- **50.** Which mode of natural selection is most important in maintaining genetic variation at single loci?
 - (A) Overdominance
 - (B) Positive frequency-dependent selection
 - (C) Negative frequency-dependent selection
 - (D) Underdominance

Medical Physics(Ph.D.)

1.	(A) Wavelength
	(B) Frequency
	(C) Mass
	(D) Charge
2.	Electron capture can result in emission of
	(A) Antineutrinos
	(B) High-LET radiation
	(C) Characteristic x-rays
	(D) Positrons
3.	If the distance from a radiation source is halved, the radiation intensity will
	(A) Increase by 2%
	(B) Increase by 50%
	(C) Double
	(D) Quadruple
4.	After 24 hours, the activity of a 100 MBq 123 I ($T_{1/2} = 13$ hours) source will be about
	(A) 50 MBq
	(B) 25 MBq
	(C) 10 MBq
_	(D) 5 MBq
5.	Which of the following is measured in newtons?
	(A) Electrons flowing through a medium
	(B) Attraction or repulsion between two bodies
	(C) Mass
	(D) Electric resistance
6.	Which of the following decay modes changes the mass number (A) of an unstable
	nucleus?
	(A) Electron capture
	(B) Beta positive Decay
	(C) Alpha decay
	(D) Isomeric transition
7.	The maximum photon energy in a x-ray beam is determined by
	(A) Voltage across the x-ray tube
	(B) Atomic number of the x-ray beam filter

(C) Current flowing through the x-ray tube

(D) Total exposure time (seconds)

8. The heel effect is more pronounced

- (A) At larger distances from the focal spot
- (B) With a larger target (anode) angle
- (C) With a smaller anode angle
- (D) At the cathode edge of the x-ray field

9. Targets for production of x-rays have

- (A) Low atomic numbers (Z)
- (B) Air cooling
- (C) Beryllium covering
- (D) High heat capacities

10. The ratio of heat to x-rays produced in a x-ray tube is about

- (A) 1:99
- (B) 99:1
- (C) 50:50
- (D) 90:10

11. All of the following could affect the HVL of an x-ray beam except

- (A) Tube voltage
- (B) Voltage ripple
- (C) Tube current
- (D) Anode angle

12. Which of the following is not a component of an image intensifier?

- (A) Anode
- (B) Input phosphor
- (C) Photocathode
- (D) Photomultiplier tube

13. High ratio grids increase all the following except

- (A) Screen/film speed
- (B) Image contrast
- (C) Patient dose
- (D) Removal of scatter

14. Which of the following factors would have the least effect on image sharpness?

- (A) Film type
- (B) Focal spot size
- (C) Screen/film contact
- (D) Screen thickness

15. The patient integral dose does not depend on the (A) Skin dose (B) Beam area (C) Organ sensitivity (D) Patient thickness 16. Which of the following is not true for Poisson distributions? (A) They are used to describe radioactive decay (B) They are used to describe quantum mottle (C) The variance is equal to the mean (D) They are always symmetrical 17. A ROC curve is used to measure diagnostic imaging (A) Performance (B) Accuracy (C) Specificity (D) Sensitivity 18. How many bits are required to store 512 shades of gray? (A) 6(B) 8 (C)9(D) 10 19. Input devices for a computer do not include (A) Keyboard (B) Trackball (C) Touch screen (D) Array processor 20. The Nyquist frequency for a 1 k digital photospot image (25 cm image intensifier size) is (A) 1 lp/mm (B) 2 lp/mm (C) 4 lp/mm

21. Breast compression in mammography

(A) Improves image contrast

(D) 8 lp/mm

- (B) Eliminates the need for a grid
- (C) Requires the use of a wide-latitude film
- (D) Increases radiation dose

22. Breast imaging using MRI would not use

- (A) Fat-suppression techniques
- (B) Special breast coils
- (C) Iodine contrast
- (D) Three-dimensional imaging techniques

23. The use of thermography to detect breast cancer

- (A) Involves ionizing radiation
- (B) Uses thermoluminescent dosimeters
- (C) Is most effective near the chest wall
- (D) Is deemed by the ACR to be ineffective

24. The fundamental measurement made by a CT scanner is the

- (A) Sorting of CT numbers
- (B) Determination of gray scale
- (C) Pixel density
- (D) Relative x-ray attenuation

25. Which of the following is not a source of CT artifacts?

- (A) Patient motion
- (B) Metal implants
- (C) Beam hardening
- (D) Low tube current

26. CT scanner spatial resolution could improve with an increase of

- (A) Reconstruction matrix
- (B) Detector elements size
- (C) Focal spot size
- (D) Scan time

27. The pulse height analyzer in NM imaging increases

- (A) Detector efficiency
- (B) Scattered photons
- (C) Contrast-to-noise ratio
- (D) Count rate

28. Following administration of ¹³¹I to a patient, the dose rate near the patient does not depend on

- (A) Administered activity
- (B) Patient age
- (C) Effective half-life
- (D) Distance to patient

29. The variance of a NM image pixel with a 100 count would be

- (A) 10
- (B) 20

	(C) 50
	(D) 100
30.	Which of the following does not concern itself with radiation risk estimates? (A) ICRP (B) UNSCEAR (C) BEIR (D) ICRU
31.	An ultrasound beam traveling through tissue cannot be (A) Absorbed (B) Amplified (C) Scattered (D) Reflected
32.	Contrast in MR can be due to all the following differences except (A) Presence of flow (B) Proton density (C) T1 (D) Atomic number
33.	MR spectroscopy is used to detect all the following except: (A) ³¹ P (B) ³² P (C) Inorganic phosphate (D) Phosphocreatinine
34.	The semi-interquartile range is most closely related to the (A) Median (B) Mean (C) Mode (D) None of the above
35.	Parity is not conserved in (A) Alpha-decay (B) Beta-decay (C) Gamma-decay (D) None of the above
36.	Which of the following factors would be most appropriate to produce a T1-weighted image in MRI? (A) $TR = 500$, $TE = 20$ (B) $TR = 2,000$, $TE = 20$ (C) $TR = 2,000$, $TE = 100$ (D) $TR = 500$, $TE = 100$

37. Which enzyme is activated during double stranded break in DNA?

- (A) DNA polymerase
- (B) Klenow fragment
- (C) RNA polymerase
- (D) Translesional polymerase

38. The main source of solar energy is

- (A) Nuclear fission
- (B) Nuclear fusion
- (C) Gravitational contraction
- (D) Combination of coal and hydrogen

39. Transverse electric (TE) waves have

- (A) Magnetic field component H in the direction of propagation
- (B) Electric field component E in the direction of propagation
- (C) Magnetic field component H in the direction of propagation and no component of electric field E in this direction
- (D) Electric field component E in the direction of propagation and no component of magnetic field H in this direction

40. In GM counter experiment the measured data is 3600, the statistical error quoted with 95 % confidence level will be

- (A) 180
- (B) 60
- (C) 120
- (D) 104

41. $\overline{\overline{AB}} + \overline{\overline{AC}}$ is equivalent to

- (A) A + B + C
- (B) ABC
- (C) $A\overline{BC}$
- (D) $AB\overline{C}$

42. The correct order of increasing wavelength is

- (A) X-rays, IR, Microwave, Visible
- (B) UV, IR, Microwave, X-rays
- (C) Microwave, X-rays, UV, IR
- (D) X-rays, UV, IR, Microwave

43. In an n-p-n transistor biased for operation in forward active region

- (A) emitter is positive with respect to base
- (B) collector is positive with respect to base
- (C) base is positive with respect to emitter and collector is positive with respect to base
- (D) none of the above

44. A uniform plane wave is one in which

- (A) $\vec{E} \times \vec{H} = 0$
- (B) $\vec{E} \cdot \vec{H} = 0$
- (C) \vec{E} and \vec{H} are perpendicular
- (D) \vec{E} and \vec{H} lie in a plane and are perpendicular to each other

45. Which of the following is true as regards photo emission?

- (A) Rate of photo emission is inversely proportional to light intensity
- (B) Maximum velocity of electron increases with decreasing wave length
- (C) Both holes and electrons are produced
- (D) Velocity of emitted electrons is dependent on light intensity

46. Given \vec{A} , \vec{B} and \vec{C} are the translational vectors in case of unit cell of a lattice in solid. The volume of the unit cell is

- (A) $|(\vec{A} \times \vec{B}).\vec{C}|$
- (B) $|\vec{A} \cdot \vec{B} \cdot \vec{C}|$
- (C) $|(\vec{A} \times \vec{B})|$
- (D) $|(\vec{A} \times \vec{B}) \times \vec{C}|$

47. A Zener diode

- (A) has a constant current in the breakdown region
- (B) has a constant voltage in the breakdown region
- (C) has a constant current in the forward region
- (D) has a constant voltage and constant current in the breakdown region

48. The parent radionuclide of the A = 4n + 2 radioactive series is

- $(A)^{238}U$
- (B) 232 Th
- $(C)^{232}U$
- (D) 238 Th

49. In common-base configuration, the output resistance is given by

- $(A) \left[\! \frac{\Delta V_{BE}}{\Delta I_E} \! \right]_{I_C = constant}$
- $(B) \left[\frac{\Delta V_{BE}}{\Delta I_E} \right]_{V_{CE} = constant}$

$$(C) \left[\frac{\Delta V_{CE}}{\Delta I_{C}} \right]_{I_{B} = constant}$$

(D)
$$\left[\frac{\Delta V_{CB}}{\Delta I_{C}}\right]_{I_{E}=constant}$$

50. The unit of magnetic flux in SI system is

- (A) Maxwell
- (B) Tesla
- (C) Weber
- (D) Gauss

Nuclear Medicine(Ph.D.)

1.	1 teral	pecquerel is equ	al to								
	(A)	10 ⁹ disintegrat		(B)	10 ¹² disintegrations/Second						
	(C)	10 ¹⁵ disintegra	tions/Se	cond		(D)	10 ¹⁸ dis	integra	tions/S	econd	
2.	Radiat	ion weighting fa	ctor (Wr) for fa	st neutroi	าร					
	(A)	5	(B)	20		(C)	1-20		(D)	5-20	
3.	The ar	tificial radioactiv Henri Becquer	•	discove	ered by (B)	Irene C	Curie and	F. Jolio	t		
	(C)	Blumgart				(D)	Ruther	ford			
4.	The ej	ection fraction o	f the gal	l bladd	er can be	evaluate	ed using				
	(A)	Cimitidine				(B)	Dipyrid	amole			
	(C)	Cholecystokini	n		(D)	Dobuta	amine				
5.	Radiocolloids are cleared from the circulation by (A) Liver parenchymal cells (B) Kupffer cells										
	(A)	Liver parenchy	(B)	кирпте	r cells						
	(C)	Hepatocytes				(D)	Heman	giomas			
6.	Colloid (A)	d shift refers to Small colloid localizes in the	•	cles c	lumped	togethe	er to	form	large	particles	which
	(B)	99mTc sulphur	colloid	changi	ng into alk	oumin co	olloid				
	(C)	Increased upta	ike of th	e colloi	d in the s _l	pleen an	id bone r	narrow	relative	e to liver	
	(D)	The redistribut	ion of co	olloid v	vithin the	liver ove	er time				
7.	The en	ergy of beta par 346.2 Kev	stronti	um-90 is	(B)	546.2 K	'ev				
	(C)	746.2 Kev				(D)	946 Ke	,			

8.	The en	ergy of gamma	photon	from san	narium	153 is									
	(A)	73.2Kev(B)	932Ke	v (C)	103.21	Kev	(D)) 113.2Kev							
9.	(A) (B) (C) (D)	wave of electron Contraction of Depolarisation Contraction of Repolarisation	f Atria n of atria f ventric n of SA n	l muscul les ode	ar tissue	e									
10.	What i	s the usual part 0.3-1.0 μm	icle size (B)	of sulphi 0.03-0		d? (C)				4.0-15 μm					
11.		nany MBq will co 1.85MBq			ıci of act		18.5M		(D)	0.185MBq					
		·			·			ьч	(0)	0.16ЭМБЦ					
12.	Which (A)	of the following Wall motion	g cannot	be evalu	uated by	a MUG/ (B)		ismal flo)W						
	(C)	Vessel patence	У		(D)	Wall tl	nickness								
13.	The no	he normal half-time of gastric emptying of a a labelled solid meal is A) 45-60 minutes (B) 75-90 minutes													
	(C)	90-120 minute	es		(D)	120-18	180 minutes								
14.	What i (A)	s the mechanisı Electron captı		l decay?		(B)	Intern	al conve	ersion						
	(C)	Positron deca	У			(D)	Isome	ric trans	ition						
15.	maxim	um dose rate w	hich can	be allow	ved?		_	·		area, what is the					
	(A)	5 μSv/hr	(B)	10 μSv	//hr	(C)	12 μS\	//hr	(D)	15 μSv/hr					

16.	The dose rate at 2 m from a particular gamma source is 400 μ Sv/hr. At what distance will it give a dose rate of 25 μ Sv/hr?								
	(A)	6 m	(B)	7 m		(C)	8 m	(D)	10 m
17.	What is	at is the biological half life of 99mTc-MAA in 30 minutes (B) 1-1.5 hrs					2-3 hrs	(D)	3-4 hrs
	(八)	30 minutes	(6)	1 1.511	113	(C)	2 3 1113	(5)	3 4 1113
18.	Norma (A)	l gallium scan fir Salivary glands	_	: 72 hou	rs may ir (B)		ptake in all of th al glands	e follow	ing except
	(C)	Liver				(D)	Kidney		
19.	What fraction of an intravenous dose of 99mTc-sulphur colloid localise in the liver, spleen and bone marrow, respectively? (A) 85%; 10%, 5% (B) 75%; 15%, 10%								liver, spleen and
	(C) 50%; 40%, 10% (D)						0%, 5%		
20.		If excessive aluminium is present in ^{99m} Tc eluate on a bone scan					one of the follo	wing wo	uld be expected
	(A)	Lung uptake				(B)	Liver uptake		
	(C)	Thyroid uptake			(D)	Gastric uptake			
21.		ead HVL for ^{99m} To e exposure rate b 1.6 mR/hr			lded vial		_	ad a rate	
							·	(D)	
22.		s the distance re ? (exposure rate 49.8 cm(B)	•	nt for 60		mGy/h/		lBq [∞] Co	source to 0.025
23.	The tis	sue weighing fac	tor for b	rain is					
	(A)	0.12	(B)	0.08		(C)	0.04	(D)	0.01
24.	Proteir (A)	ns are separated Size	by SDS-	electrop	horesis	on the b (B)	asis of their Charge		
	(C)	Amino acid con	npositio	n	(D)	Charge	and shape		

25.	In Sca	nning Electron N	∕licrosco	pe (SEM),	to form	ı an ima	ige of the spec	cimen
	(A)	Electron shou	ld pass t	hrough the	e specii	men		
	(B)	Electrons are	scattere	d from the	surfac	e		
	(C)	A thin film of	heavy m	etal is eva	porated	b		
	(D)	Specimens are	e stained	l				
26.	The te	ertiary structure	of prote	in is detec	ted by			
	(A)	X-ray crystallo	graphy			(B)	Spectrophot	tometry
	(C)	Electrophores	iis		(D)	Chrom	natography	
27.	ELISA	assay uses						
	(A)	An enzyme w	hich can	react with	a seco	ndary a	ntibody	
	(B)	An enzyme w				•		
	(C)	A substrate w	_			olored _l	product	
	(D)	A radiolabelle	d second	dary antibo	ody			
28.	Which	spectroscopy is	s used to	detect –S	H grou	p and di	sulphide linka	ges in proteins
	(A)	CD spectrosco	ру			(B)	Fluorescenc	e spectroscopy
	(C)	NMR spectros	сору			(D)	FTIR spectro	oscopy
29.	Maxin	num limit on tot	al discha	arge per da	ay in sa	nitary se	ewage system	for ¹²⁵ l is
	(A)	0.37 MBq	(B)	3.7MBq	(C)	0.037N	MBq (D)	37MBq
30.	The ex	•	:he surfa	ce of a pa	ckage t	o be shi _l	pped is 50 mr	em/hr.What label is
	(A)	DOT Radioact	ive Whit	e I		(B)	DOT Radioa	ctive Yellow II
	(C)	DOT Radioact	ive Yello	w III		(D)	no radioacti	ve label is required
31.	The n	nost sensitive si	tage for	the lethai	l effect	s of rad	liation is:	
	(A)	<u>Preimplantat</u>	<u>ion</u>			(B)	Early organ	<u>nogenesis</u>
	(C)	Late organog	•			(D)	The fetal pe	
32.				ontinuing	DNA re			ites, once it is initiated is
	(A)	DNA polymer	ase I			(B)	DNA polyme	erase III
	(C)	Polymerase b	eta			(D)	DNA Gyrase	

33.	North	Northern blotting is used for separation of											
	(A)	DNA	(B)	Mrna		(C)	Protein	(D)	Plasmids				
34.		electric focus		ıs are sepa									
	(A)	In a pH gra	dient		(B)	In a sa	lt gradient						
	(C)	In a densit	y gradient			(D)	In a temperat	ure grad	ient				
35.		nzyme used 5 end of ano	-	ohosphodi	iester bo	ond in a	nick between	a 3'end	of one DNA chain				
	(A)	DNA polyn	nerase			(B)	Restriction En	donucle	ase				
	(C)	S1 nucleas	e			(D)	DNA ligase						
36.	Which	n of the follow	ving techni	ques is pri	imarily ι	ındertal	ken to amplify [DNA?					
	(A)	Polymeras	e chain rea	ction		(B)	Microarrays						
	(C)	Northern E	Blotting			(D)	Southern Blot	ting					
37.	Electr	odessication	is used to o	lestroy tis	sue by								
	(A)	High frequ	ency positr	ons		(B)	Low frequenc	y positro	ns				
	(C)	High frequ	ency photo	electrons	(D)	High fr	equency electr	ic curren	t				
38.	Malo	ndialdehyde	is a degra	dation pr	oduct o	f							
	(A)	Peroxidise	ed lipids			(B)	Peroxidised 1	proteins					
	(C)	Glucose n	netabolism	l		(D)	Carbohydrate	e metab	olism				
39.	Whic	h of the follo	owing state	ement is n	iot true	for X-r	ays						
	(A)	X-rays are	e electrom	agnetic r	adiatio	ns							
	(B)	•	ve a speed	•									
	(C)			0 0	•		s in a tungsten	_					
	(D)	Intensity f	falls of in a	iccordanc	ce with	the inv	erse square la	W					
40.		n of the follow	_	-		-							
	(A)	Bone	(B)	Epitheli	ium	(C)	Cartilage	(D)	Muscle				

41. Which of the following suffixes implies "growth" or "formation":										
	(A)	-blast	(B)	-lemma (C)	-stasis	(D) ·	-cyte			
42.	If the inside		of gluco	se in the water o	utside (of a cell is	higher	than	the concentra	ition
	(A)	Water will te	nd to en	ter the cell by osm	nosis					
	(B)	Water will te	nd to lea	ive the cell by osm	osis					
	(C)	Glucose will t	end to e	enter the cell by os	mosis					
	(D)	Glucose will t	end to le	eave the cell by os	mosis					
43.	Times	a proton is hea	vier thar	n an electron is						
	(A)	1827	(B)	1876	(C)	1836		(D)	1789	
44.	What	is the resting m	iembrani	e potential of a ne	uron?					
	(A)	-70 Mv	(B)	-65Mv	(C)	-80 Mv		(D)	-55mV	
45.	Which	of the followir Nucleotide a	_	a chemical radiose	ensitizer (B)	·? Electron	ic affini	c com	pounds	
	(C)	Nitroimidazo	les	(D)	Amino	thiols				
46.	The m	aterial used for	· absorbi	ng excess neutron	ıs in a nı	uclear rea	ctor is			
	(A)	Cadmium	(B)	Neodymium	(C)	Vanadiu		(D)	Indium	
47.	Fnerg	y of thermal ne	utrons is							
	(A)	0.50 ev	(B)	0.05 ev	(C)	0.25 ev		(D)	0.025 ev	
48.	In β⁺ c	lecay, nucleon i	number i	is						
	(A)	Conserved	(B)	Not conserved	(C)	Unstable	9	(D)	Stable	
49.	Pheno	omena of radioa	activity w	vas discovered in						
	(A)	1893	(B)	1894	(C)	1895		(D)	1896	
50.	Heavy	nuclei have								
	(A)	More proton	s than ne	eutrons	(B)	More ele	ectrons	than r	neutrons	
	(C)	More neutro	ns than e	electrons	(D)	More ne	utrons	than n	rotons	

Statistics(Ph.D. & M.Phil.)

1. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be a matrix such that $A^3 = O_{2 \times 2}$, but $A \neq O_{2 \times 2}$, then

$$(A) A^2 = O_{2 \times 2}$$

$$(B) A^2 = A$$

$$(C) A^2 = I - A$$

$$(D) A^2 = I + A$$

2. The inverse of a skew symmetric matrix of odd order is

(A) A symmetric matrix

(B) A skew symmetric matrix

- (C) Diagonal matrix
- (D) Does not exist

3. If $A = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix}$ and $|A| \neq 0$, then the system of equations

 $a_1x + b_1y + c_1z = 0$, $a_2x + b_2y + c_2z = 0$ and $a_3x + b_3y + c_3z = 0$ has

- (A) Only one solution
- (B) Infinite number of solutions
- (C) No solution
- (D) More than one but finite number of solutions

4. One hundred identical coins, each with probability p of showing heads are tossed once. If 0 and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, the value of <math>p is

- (A) 1/2
- (B) 51/101
- (C) 49/101
- (D) 3/101

5. Let A, B and C be three mutually independent events. Consider the two statements S_1 and S_2 :

 S_1 : A and $B \cup C$ are independent

 S_2 : A and $B \cap C$ are independent

(A)

(C)

Both S_1 and S_2 are true

Only S_2 is true

6.		lom from the le						her letter is taken hey are the same
	(A)	1/45	(B)	5/18	(C)	13/90	(D)	19/90
7.	Each o	-	and B to	oss three fair coi	ns. The j	probability that	both get	the same number
	(A)	3/8	(B)	1/9	(C)	5/16	(D)	7/16
8.	just tw							On the envelope, has come from
	(A)	4/11	(B)	1/3	(C)	5/12	(D)	1/7
9.		-		X is $Y + 0.8X =$ alue of correlation			deviation	s of X and Y are
	(A)	-0.3	(B)	-0.4	(C)	0.3	(D)	0.4
10.				efficient between the			where s	tandard deviation
		$tan\theta = \frac{1+r^2}{2r}$				$tan\theta = \frac{1-r^2}{2r}$		
	(C)	$tan\theta = \frac{1+r^2}{r}$			(D)	$tan\theta = \frac{1-r^2}{r}$		
11. 0 < y	-	nt probability de	ensity fu	nction of (X,Y) :	is $f(x, y)$	$) = exp\{-(x +$	y)}, for	$0 < x < \infty$ and

Only S_1 is true

(D)

Neither S_1 nor S_2 is true

(B)

Assertion(A): P(X < Y/X < 2Y) = P(X < Y)

Reason (R): X and Y are independently exponentially distributed which possesses 'lack of memory property'

Select your answer from the following codes:

- (A) Both (A) and (R) are true and (R) is correct explanation of (A)
- (B) Both (A) and (R) are true but (R) is not correct explanation of (A)
- (C) (A) is true but (R) is false
- (D) (A) is false but (R) is true
- **12.** The joint probability mass function of random variables *X* and *Y* is

$$f(x,y) = \frac{\lambda^x e^{-\lambda} p^y (1-p)^{x-y}}{y! (x-y)!}, y = 0,1,...,x; x = 0,1,...$$

The marginal distribution of

- (A) X and Y both are Poisson
- (B) X and Y are binomial
- (C) X is binomial and that of Y is Poisson
- (D) X is Poisson and that of Y is binomial
- **13.** Let X be a random variable

Assertion (A):
$$E(X^2) \ge (E(X))^2$$

Reason (R): X^2 is convex function of X

Select your answer from the following codes:

	(B)	(A) is false bu	t (R) is t	rue								
	(C)	Both (A) and	(R) are t	rue and ((R) is co	rrect exp	olanatio	n of (A)				
	(D)	Both (A) and	(R) are t	rue but (R) is no	t correct	explana	ition of ((A)			
14.		ormal distributi ximately	on, qua	rtile de	viation,	the me	an devi	ation aı	nd stand	ard devi	ation	are
	(A)	1:2:3	(B)	$\frac{1}{2}$: 3: 5	;	(C)	10:12	2:15	(D)	1:1:1		
15.	The h	ypergeometric d	istributio	on with p	oaramete	ers N, M	and n, f	or				
	$N \rightarrow$	$\infty, \frac{M}{N} \to p, 0 < p$	< 1, red	duces to	the follo	owing di	stributio	on				
	(A)	Gamma(B)	Geom	etric	(C)	Binon	nial	(D)	Norm	al		
16.		and Y are two inequals $Y < 3$) is	depender	nt Poisso	on variat	tes such	that $X\sim$	P(1) an	d Y∼P(2	2), the pr	obabi	lity,
	(A)	$8.5e^{-3}$	(B)	$4e^{-3}$		(C)	e^{-3}		(D)	$3e^{-3}$		
17.	If $\phi(t)$	() is characteristi	c function	on, which	h of the	followin	g is inco	orrect?				
	(A)	$ \phi(t) \le 1$										
	(B)	$\phi(t)$ is contin	uous eve	erywhere	e on real	line						
	(C)	$\phi(0) = 1$										
	(D)	$ \phi(t) > 1$										
18.		and Y are indepution of $min(X)$	•	expone	ential ra	ndom v	ariable	with the	e same	mean λ ,	then	the
	(A)	Exponential w	ith mea	n λ/2		(B)	Expo	nential v	vith mea	n 2λ		
	(C)	Exponential w	ith mea	nλ		(D)	Lapla	ce distri	bution w	ith mean	λ	
19.	Mean	and variance of	standard	l Logisti	c distrib	ution are	.					
	(A)	Mean = 0, Van	riance =	$\frac{\pi^2}{3}$		(B)	Mean	=0, Va	riance =	$\frac{\pi^2}{4}$		
	(C)	Mean = 0, Van	riance =	$\frac{2\pi^2}{3}$		(D)	Mean	=0, Va	riance =	$\frac{3\pi^2}{2}$		

(A)

(A) is true but (R) is false

20.	respect		vhat rang	ge of the coeffic	ient of c	correlation (ρ) be	etween X	on are 18 and 32 X and Y, the ratio
	(A)	$ \rho < 0.63 $			(B)	$0.33 < \rho < 0.8$	30	
	(C)	$\rho > 0.88$			(D)	$0.63 < \rho < 0.8$	35	
21.	$H_0:\theta =$	-	$st \theta = 0$	$\theta_1 = 0.1$. We ac		-		o decide between if $\{X > 2\}$. Then,
	(A)	0.81	(B)	0.19	(C)	0.25	(D)	0.75
22.	Let X_n	be a sequence of	f randon	n variables and X	is a ran	dom variable. F	urther let	t k be a constant.
	Asserti	on (A): X_n conve	erges in	probability to X :	$\Rightarrow X_n$ co	onverges in distri	bution to	X
	Asserti	on (B): X_n conve	erges in	distribution to k	$\Rightarrow X_n$ co	onverges in proba	ability to	o k
	Then							
	(A)	Both A and B a	re true		(B)	Only <i>A</i> is true		
	(C)	Only <i>B</i> is true			(D)	Neither A nor A	3 is true	
23.	-	population stand						ing 80 units, then t replacement is
	(A)	0.55	(B)	0.20	(C)	0.35	(D)	0.85
24.	inter-ar a train)	rival time follow	vs an ex	ponential distrib	ution an	d the service tim	e (the tii	Assume that the me taken to hump verage number of
	(A)	2	(B)	3	(C)	4	(D)	5
25.	The em	or degrees of fre	edom fo	or 4 × 4 Graeco-	Latin sq	uare design is		
	(A)	6	(B)	5	(C)	4	(D)	3

- 26. Let $X_1, ..., X_n$ be a random sample of size n from $Uniform(0, \theta)$ distribution, where θ is unknown. The maximum likelihood estimator of θ based on this sample is
 - (A) $min(X_1,...,X_n)$
- $max(X_1, ..., X_n)$
- $\frac{min(X_1,...,X_n)+max(X_1,...,X_n)}{2}$ (C)
- (D) $\frac{max(X_1,...,X_n) min(X_1,...,X_n)}{2}$
- Let $X_1, ..., X_n$ be independent and identically distributed as Poisson distribution with parameter θ . 27. Let $(\theta) = \frac{e^{-\theta}\theta^3}{3!}$, $T = \sum_{i=1}^n X_i$ and $\binom{T}{3} < 0$ for T < 3. Then, the unique minimum variance unbiased estimator of $\tau(\theta)$ is

 - (A) $\phi(T) = {T \choose 3} \left(\frac{1}{n}\right)^3 \left(1 \frac{1}{n}\right)^{T-3}$ (B) $\phi(T) = {T \choose 2} \left(\frac{1}{n}\right)^2 \left(1 \frac{1}{n}\right)^{T-2}$
 - (C) $\phi(T) = {T \choose 1} \left(\frac{1}{n}\right)^1 \left(1 \frac{1}{n}\right)^{T-1}$ (D) $\phi(T) = {T \choose 0} \left(\frac{1}{n}\right)^0 \left(1 \frac{1}{n}\right)^{T-0}$
- 28. Consider the linear programming (LP) problem – maximize $x_1 + x_2$ subject to

$$x_1 - 2x_2 \le 10$$

$$x_2 - 2x_1 \le 10$$

$$x_1 \ge 0, x_2 \ge 0$$

Then

- (A) The LP problem admits an optimal solution
- (B) The LP problem is unbounded
- (C) The LP problem admits no feasible solution
- The LP problem admits a unique feasible solution (D)
- 29. Which of the following relations is incorrect in the context of Cost of Living Index Number (CLIN)
 - $Real\ Wages = \frac{Money\ Wages}{CLIN} \times 100$ (A)
 - Purchasing Power of Money = $\frac{1}{CLIN}$ (B)
 - Real Wages = $\frac{CLIN}{Money Wages} \times 100$ (C)
 - $\textit{CLIN} = \frac{\textit{Total Expenditure in current year with base year quantities as weights}}{\textit{Total expenditure in base year}} \times 100$ (D)

30.	Suppose $X_1, X_2,$ is a sequence of i.i.d. random variables with common variance $\sigma^2 > 0$. Let
	$Y_n = \frac{1}{n} \sum_{i=1}^n X_{2i-1}$ and $Z_n = \frac{1}{n} \sum_{i=1}^n X_{2i}$. Then, the asymptotic distribution of $\sqrt{n}(Y_n - Z_n)$ as
	$n \to \infty$ is

- (A) N(0,1)
- (B) $N(0, \sigma^2)$
- (C) $N(0, 2\sigma^2)$
 - (D) $N(0, 3\sigma^2)$

31. Let X be a discrete random variable taking non-negative integer values in a set E. Let
$$P(X > a + b/X > a) = P(X > b)$$
 for any two positive integers $a, b \in E$. Then, which of the following is a possible distribution of X?

(A) Negative Binomial

(B) Geometric

(C) Binomial

(D) Possion

32. Let
$$Y_1, Y_2, Y_3$$
 and Y_4 be four random variables such that $E(Y_1) = \theta_1 - \theta_3$; $E(Y_2) = \theta_1 + \theta_2 - \theta_3$; $E(Y_3) = \theta_1 - \theta_3$; $E(Y_4) = \theta_1 - \theta_2 - \theta_3$, where $\theta_1, \theta_2, \theta_3$ are unknown parameters. Also assume that $Var(Y_i) = \sigma^2, i = 1,2,3,4$. Then

(A) θ_1 is estimable

(B) θ_2 is estimable

(C) θ_3 is estimable

(D) θ_1 , θ_2 and θ_3 are estimable

33. The hazard rates of two life time random variables
$$T_1$$
 and T_2 with respective cumulative distribution functions $F_1(t)$ and $F_2(t)$ and probability density functions $f_1(t)$ and $f_2(t)$, are $\Box_1(t) = 3t^2$ and $\Box_2(t) = 4t^3$, $t > 0$, respectively. Then,

- $(A) E(T_1) < E(T_2)$
- (B) $f_1(t) < f_2(t) \forall t > 0$
- (C) $F_1(t) \ge F_2(t) \forall t > 0$
- (D) $F_1(t) < F_2(t) \forall t > 1$

34. Let
$$(X_1, Y_1), ..., (X_n, Y_n)$$
 be a bivariate set of n independent observations from $(X, Y) \sim BVN(\zeta, \eta, \sigma_1^2, \sigma_2^2, \rho)$, then the distribution of (\bar{X}, \bar{Y}) is

(A) $BVN(\zeta, \eta, \sigma_1^2, \sigma_2^2, \rho)$

- (B) $BVN\left(\zeta,\eta,\frac{\sigma_1^2}{n},\frac{\sigma_2^2}{n},\rho\right)$
- (C) $BVN\left(\frac{\zeta}{n}, \frac{\eta}{n}, \frac{\sigma_1^2}{n}, \frac{\sigma_2^2}{n}, \rho\right)$
- (D) $BVN\left(\frac{\zeta}{n}, \frac{\eta}{n}, \frac{\sigma_1^2}{n}, \frac{\sigma_2^2}{n}, \frac{\rho}{n}\right)$

- Let g(F) be an estimable parameter of degree m, and let $X_1, ..., X_n$ be a sample of size $n, n \ge n$ **35.** m. Corresponding to any symmetric kernel $T(X_{i_1}, ..., X_{i_m})$ of g(F), the one sample U-statistic for the sample is given by $U(X_1, ..., X_n) = {n \choose m}^{-1} \sum_{C} T(X_{i_1}, ..., X_{i_m})$, where summation C is over all $\binom{n}{m}$ combinations of m integers $(i_1, i_2, ..., i_m)$ chosen from (1, 2, ..., n). The variance of $U(X_1,\ldots,X_n)$ is
 - (A) $\frac{1}{\binom{n}{n}} \sum_{c=1}^{m} \binom{m}{n} \binom{n-m}{m-c} \zeta_c$
- (B) $\frac{1}{\binom{n}{m}} \sum_{c=1}^{n} \binom{m}{n} \binom{n-m}{m-c} \zeta_c$
- (C) $\binom{n}{m} \sum_{c=1}^{m} \binom{m}{n} \binom{n-m}{m-c} \zeta_c$
- (D) $\binom{n}{m} \sum_{c=1}^{n} \binom{m}{n} \binom{n-m}{m-c} \zeta_c$

Here $\zeta_c = cov_F \left(T(X_{i_1}, \dots, X_{i_m}), T(X_{i_1}, \dots, X_{i_m}) \right)$

- For the bivariate normally distributed random variable (X,Y), Kendall's tau measure of **36.** association between X and Y is zero
 - (A) If and only if X and Y are independent
 - (B) If and only if X and Y are perfectly positive correlated.
 - (C) If and only if X and Y are perfectly negative correlated
 - (D) If and only if X and Y are perfectly correlated
- **37.** A persistent state (say k) is said to be null, if its mean recurrence time is
 - (A) Finite
- (B) Unity
- (C) Infinite
- (D) Zero
- Let X_1, X_2, X_3 be three random variables such that $\rho_{12} = \rho_{13} = \rho_{23} = \rho \neq 1$, then the square of 38. multiple correlation coefficient $R_{1.23}^2$ is
- (A) $\frac{\rho^2}{1+\rho}$ (B) $\frac{1+2\rho^2}{1+\rho}$ (C) $\frac{2\rho^2}{1+\rho^2}$ (D) $\frac{2\rho^2}{1+\rho}$
- **39.** Let X be a continuous random variable with mean 2 and variance 9. Then

 $P\{|X-2| \ge 6\}$ is

- (A) Bounded above by 1/4
- (B) Bounded below by 1/4
- (C) Bounded above by 1/2
- Bounded below by 1/2 (D)

40.		ninimum number cy of at least $\frac{1}{3}$ ×					oximate	$\int_{1}^{2} x e^{-x} dx \text{ to an}$
	(A)	100	(B)	100e	(C)	1000	(D)	1000e
41.		•				qual size <i>M</i> with <i>N</i> is sufficiently	•	random sampling

•	•	•	•	•	•	_
without replacement,	, assuming that	number (of clusters N is sufficie	ently large, is		
-	_					

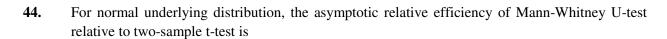
$$(A) \qquad 1 + \rho(M-1)$$

(B)
$$1 + 2\rho(M-1)$$

(C)
$$(1 + \rho(M-1))^{-1}$$

(D)
$$(1 + 2\rho(M-1))^{-1}$$

42. In one classification model, consider the following analysis of variance table


Sources of variation	d.f.	Sum of squares	F-statistic
Treatments	2	250	F = 7.5
Error	12	200	
Total	14	450	

The coefficient of determination R^2 is

- (A) 5/2
- 5/9 (B)
- (C) 9/5
- (D) 2/5

43. Let
$$f$$
 be a measurable function defined over a measurable set E . Then the function $-f$ (the negative of f) is

- (A) Measurable
- (B) May or may not be measurable
- (C) Measurable if function f vanishes no where on E
- (D) Outer measurable

- 0.655 (A)
- 0.755 (B)
- (C) 0.855
- (D) 0.955

46.		eters, $\mu_0 = 0$, $L = 0$	•		•		•	verage	contro	ol chart with
	(A)	-4 to 4 (B)	-3 to 3	(C)	-2 to	2	(D)	-1 t	o 1	
47.	A nece	essary condition	for a symmetric	al BIBD	, assumi	ing the t	treatmer	nts as e	ven, is	s that $(r - \lambda)$
	(A)	Positive integer	r	(B)	Negati	ve integ	er			
	(C)	Either positive	or negative integ	ger	(D)	Perfec	t square			
48.		$W_m(n, \Sigma), n > 0$ uted of A with P	_	_	nd <u>Y</u> is	an m>	< 1 rand	dom ve	ctor i	ndependently
	(A)	$\frac{\underline{\underline{Y}'A\underline{Y}}}{\underline{\underline{Y}'\Sigma\underline{Y}}} \sim \chi_n^2$ and i	s independent of	<u>Y</u>						
	(B)	$\frac{\underline{\underline{Y}'A\underline{Y}}}{\underline{\underline{Y}'\Sigma\underline{Y}}} \sim \chi_{2n}^2$ and	is independent of	of <u>Y</u>						
	(C)	$\frac{\underline{\underline{Y}'A\underline{Y}}}{\underline{\underline{Y}'\Sigma\underline{Y}}} \sim \chi_{\frac{n}{2}}^2 \text{ and i}$	s independent of	<u>Y</u>						
	(D)	$\frac{\underline{\underline{Y}'A\underline{Y}}}{\underline{\underline{Y}'\Sigma\underline{Y}}} \sim \chi_{3n}^2$ and	is independent of	of <u>Y</u>						
49.	For the	e Gauss Markoff	model $(\underline{Y}, A\theta, \alpha)$	$\sigma^2 I$), wit	$h A = \left(\begin{array}{c} A & A \end{array} \right)$	(1 1 1 0 1 1	$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ and	$\underline{\theta} = \left(\begin{array}{c} \end{array} \right)$	$\begin{pmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \end{pmatrix}, l$	$_{1} heta_{1}+l_{2} heta_{2}+$
	$l_3\theta_3$ is	estimable if							3	
	(A)	$l_1 = 0, l_2 = 1,$	$l_3 = 0$		(B)	$l_1 = 0$	$l_{2}=0$	$l_3 = 1$		
	(C)	$l_1 = 1, l_2 = 0,$	$l_3 = 0$		(D)	$l_1 = 1$	$l_{2} = 1$	$l_3 = 0$		
50.		oility of a sampli cribed as	ng plan to discri	minate b	etween l	lots of h	igh qua	lity and	l lots c	of low quality
	(A)	An average out	tgoing quality cu	irve	(B)	A proc	ess con	trol cha	ırt	
	(C)	An operating c	haracteristic cur	ve	(D)	A rang	ge chart			
				<i>x-x-x</i>						

In a 3^3 design, the error degress of freedom with 5 replicates are

106

(C)

104

(D)

102

(B)

45.

(A)

108

Stem Cell Tissue Engineering & Biomedical Excellence(Ph.D.)

1.			-	signalling by β -adrenergic receptor
	(A)	e represents which one of the followin Homologous Desensitization	(B)	Homologous Sensitization
	(C)	Heterologous Desensitization	(D)	Heterologous Sensitization
2.	Whic	ch one of the following does not repres	ent as a	growth medium?
	(A)	Leibovitz	(B)	RPMI 1640
	(C)	Histopac	(D)	DMEM
3.	In ord	der to perform cell line authentication	which o	of the following methods is not used:
	(A)	DNA barcoding	(B)	in situ hybridization
	(C)	Isoenzyme analysis	(D)	Cytogenetic analysis
4.	One o	of the following does not represent sec	ond me	essenger:
	(A)	cAMP	(B)	cGMP
	(C)	cCMP	(D)	Diacylglycerol
5.		ce immunoglobulin (Ig) is stripped fro		surface of B-lymphocytes by all the
	_	olytic enzymes, except one of the follo	_	
	(A)	Collagenase	(B)	Pronase
	(C)	Chymotrypsin	(D)	Trypsin
6.	Over	expressing the niche milieu will produ	ce whic	ch of the following:
	(A)	No effect in the local environment	(B)	Apoptosis of the cells
	(C)	Cancer cell phenotype	(D)	Differentiation of cells
7.	Diffe	rentiation of one differentiated cell to	other di	fferentiated cell type is known as:
	(A)	Primitive cell differentiation	(B)	Ontogeny
	(C)	Metaplasia	(D)	Dysplasia
8.	Durir	ng drosophila development, number of	nuclei	bathing in the common cytoplasm
	is rep	resented by which of the following:		
	(A)	Cap cell	(B)	Syntial blastoderm
	(C)	Follicle cell	(D)	Trophoblast cell
9.	Riche	est reservoir of mesenchymal stem cell	ls is rep	resented by which of the following:
	(A)	Bone Marrow	(B)	Cord blood cells
	(C)	Adipose Tissue	(D)	Wharton Jelly

10.	One of the following can be used to generate (A) Blastomere (C) Blastocyst cells			te the w (B) (D)	Phole organism: Dental pulp stem cells Bone marrow cells				
11.	The embryoid bodies can be generated from which type of the cells:								
	(A)	Induced Plur	-	Stem Cells	(B)	Mesenchymal		ells	
	(C)	Hemangiobla	ıst		(D)	Niche suppor	t cells		
12.	All the following, except one is not related to feeder cells used during stem cell culture: (A) Provide Extracellular Secretions for Growth (B) Source of antitrypsin (C) Layer of cells unable to divide (D) Irradiated cell types								
13.	• Pancreatic cell progenitor can be identified from the pool of population of stem of								ells by
	which	of the following	ng mast	· ·					
	(A)	PAX 1	(B)	PDX	(C)	GPCR	(D)	RxR	
14.	When studying the antibody reaction on the cells grown on matrix which of the following is exercised: (A) Use blocking reagent after addition of specific antibody								
	(B) Use blocking reagent before addition of specific antibody								
	(C) A combination of specific and non-specific antibody								
	(D) Only single antibody specific protein in question								
15.		14							
16.		yonic germ cel High Alkalin	ls (EG) e phosple phospl nosphata	possess is: hatase activity natase activity ase activity	both m	ouse Embryon	ic stem	n cells (ES	and

17.	Addition of leukaemia inhibitory factor to the embryonic cell culture performs which of the following function:									
	(A) (C)	Augmentation of Apoptosis Inhibition of differentiation	(B) (D)	Augmentation of Differentiation Inhibition of Apoptosis						
18.	vector used	r was tagged with sequence coding to identify the interacting protein. Pinve it:	for His- npoint t	rotein for stem cell pluripotency, Sox2 -2 tag, its expression in stem cell was he methodology that you would use to						
	(A) Immuno-hybridization followed by southern blotting									
	(B) Immuno-precipitation and followed by Northern blotting									
	(C) South-Western blotting(D) Immuo-pulldown followed by immuo-blotting									
	ing									
19.	The deliberate creation of embryo for production of stem cells line that will not provoke any immune response and rejection is termed as: (A) Positional cloning (B) Genetic cloning									
	, ,	C	, ,	C						
	(C)	Reproduction cloning	(D)	Therapeutic cloning						
20.	Matrigel is a commonly used material for growing cell. Which of the following is the component of Matrigel:									
	(A)	Heparan sulfate (B) Laminin	(C)	Collagen (D) β-Catenin						
21.	Scaffold or materials that are permissive to bone formation but do not attract the osteo-progenitors that initiate bone formation is termed as:									
	(A)	Osteo-conduction	(B)	Osteo-induction						
	(C)	Osteo-inhibition	(D)	Osteo-porosis						
22.	Mesangioblasts are the stem cells associated with differentiation into:									
	(A)	Mesothelial cells	(B)	Vessel forming cells						
	(C)	Bone forming cells	(D)	Neural cell						
23.	One of the following process is used to generate all female derived embryonic stem cells									
20 •	by tricking the non-fertilized egg into duplication of DNA:									
	(A)									
	(C)	Fertilization	(D)	Parthenogenesis						
				-						

- 24. Which of the following biological assay was used first to detect hematopoietic stem cells: (A) Cell migration assay (B) Clonal subtraction assay (C) Soft agar colony forming assay (D) Spleen colony forming assay 25. Which one of the following best explains the progenitor cells: An immature cell committed to a particular differentiation lineage with limited (A) proliferation (B) A cell that is terminally differentiated with very low proliferation (C) Cell isolated from inner cell mass of the embryo with very high proliferation rate (D) Totipotent cell isolated at morula stage having very high proliferation 26. The term epigenetic is commonly used during stem cell imprinting, this term is best explained as: Mitotically /meiotically heritable change involving covalent modification of (A) existing protein (B) Mitotically /meiotically heritable change not involving changes in DNA sequence (C) Mitotically /meiotically heritable change involving events at 5' upstream region of a gene (D) Mitotically /meiotically heritable change due to mutation in promoter region 27. Method of removing trophectoderm of a blastocyst, using antibodies bound to surface antigen of trophectoderm and complement is represented as: (A) Immuno-surgery (B) Immuno-precipitation assay (C) Immuno-rejection Immuno-sorbent assay (D) 28. The Stem cells isolated from bone marrow were differentiated into myogenic lineage. The cells were then washed and loaded with fresh medium with no serum for a period of 8 hrs. When this medium was added on the fresh stem cells these cells also got
- differentiated to myogenic lineage. Such a medium is termed as:
 - (A) Condition medium of pluripotency
 - Condition medium of myogenic cells (B)

	(C)	(C) Condition medium of stem cells										
	(D)	Condition	medium (of bone marro	OW							
29.				presents cock Yamanaka fac	_	enerating ind	uced plui	ripotent ster	n cell			
	(A)	Oct4, Sox2	2, cMyc, a	and Klf4	(B)	Oct4, Sox2	2, cMyc, a	and nanog				
	(C)	Oct4, Sox2	2, nanog,	and Klf4	(D)	Oct4, nano	og, cMyc,	and Klf4				
30.				ng stem cell human embry		-	ted to dif	ferentiate n	nouse			
	(A)	Nanog.	(B)	SSEA-1	(C)	Oct 3/4	(D)	Sox2				
31.	All th	ne following	except on	e, represent p	orogenitor	cells:						
	(A)	Alveolar ty	pe 2 cell	s for lungs								
	(B)	,										
	(C)											
	(D)	Oval Cells	for liver									
32.	All t	he following	g differer	ntiated cells	could be	derived fro	om embr	yonic stem	cells			
	excep	ot one of the f	following	:								
	(A)	Adipocytic	Cells		(B)	Chondrocy	tic Cells					
	(C)	Myocytic ((D)	Trophoecto						
33.	The Stem cell sorting and identification required use of CD markers during FACS analysis, what does CD stands for:											
	(A)	Combinato			(B)	Cluster of	differenti:	ation				
	(C)	Combined			(D)	Chemotact						
34.	Durir	ng Flowcyton	netry, cor	nmonly used	cell types	called side p	opulation	cell is				
	named	due to which	of the fo	llowing chara	acter:							
	(A)	Cells lying	on the si	de of Hoechs	t dye retai	ning cells						
	(B)	Cells lying	on the si	de of differer	ntiated cell	lacking Hoe	echst dye					
	(C)	Cells displ	aced on t	he side of a c	ulture plat	e before addi	ition of H	oechst dye				
	(D)	Cells posit	ive for H	oechst dye ob	otained afte	er trypsinizat	cion					
35.	Whic (A)		_	nt occurs foll karyon forma	_	mmalian fert	ilization:					
	(B)	Loss of fol	licular ce	ells								
	(-)											

	(C)	Exit from the meiosis									
	(D)	Entry to the meiosis									
36.	mito prec	newt, following amputation of forelimb the cells around the amputated area undo osis, trans-differentiation and de-differentiation. Which of the following excedes all these:									
	(A)										
	(C)	Formation of trophoectoderm (D) Formation of teratoma									
37.	One of	of the major difference between osteoblast and osteoclast cells is:									
	(A)	Differentiation to osteocytes by osteoblast and chondrocytes differentiation osteoclast cell	ı by								
	(B)	B) Differentiation to myocytes by osteoblast and chondrocytes differentiation by osteoclast cell									
	(C)	(C) Bone resorption by osteoblast and bone formation by osteoclast cell									
	(D) Bone formation by osteoblast and bone resorption by osteoclast cell										
38.	(A) (B)	Increase in the specific amplification	PCR								
	(C) (D)	* *									
	(-)										
39.	For	the identification of sequence that a transcription factor binds for the g	gene								
	regu	ulatory activity can be ascertained by which of the following technique:									
	(A)	Mutagenic assay (B) DNA finger printing assay									
	(C)	Gel retardation assay (D) Gene silencing assay									
40.		1 1	ning								

41.	(D) It inhibits dihydrofolate reductase activity The location of Hematopoiesis during development in mouse is:								
	(A)	Mesonephric to Metanephric axis							
	(B)	Neural tube site							
	(C)	Extraembryonic yolk sac							
	(D)	Extraembryonic aorta-gonad-metane	phric						
42.	Abzy: (A) (B) (C)	me, is an important molecule designate RNA with catalytic activity Catalytical antibody Catalytic carbohydrate	ed as:						
	(D)	Nano-based Fe with catalytic activity	y						
43.		-	e used	to differentiate the cancer cell out of					
	(A) (C)	d cell population: Loss of telomerase function High nuclear to cytosol ratio	(B) (D)	Loss of contact inhibition Polyploidy in cells					
44.	Dideo	oxy nucleotides are used to achieve wh	ich of t	he following outcome:					
	(A)	Sequencing of DNA	(B)	Mapping of DNA					
	(C)	Generation of clone contigs	(D)	Amplification of DNA					
45.	The major source of the collagen synthesizing cells used in the tissue engineering studies is:								
	(A)	Neural cells	(B)	Endothelial cells					
	(C)	Fibroblast cell	(D)	Epithelial cells					
46.	Bisul	fite sequencing methodology is used to	ascert	ain which of the following:					
	(A)	Methylation of CpG islands	(B)	Acetylation of histones					
	(C)	Phosphorylation of serine/threonine	(D)	Deacetylation of histones					
47.		inactivation of complement system oved by which of the following method:		m to be used during cell culture is					
	(A)	Filtration through 0.2 micron filter	(B)	Heat inactivation					
	(C)	Charcoal treatment	(D)	Autoclaving					

It provides a precursor for dihydrofolate reductase activity

(C)

48.	The a	action of the antibody involves its specificity towards a particular antigen, which
	of the	e following contributes to antibody specificity:
	(A)	The variable region of the heavy and light chain
	(B)	The constant region of antibody
	(C)	The heavy chain of the antibody
	(D)	Hinge region of antibody

49. Non-adherent clusters of neural progenitor cells grown under *in vitro* and used for propagation of neural stem cells is represented by which of the following:

(A) Glial cell clusters

(B) Axonic cell clusters

(C) Neurosphere

(D) Neural tube

50. Which one of the following stem cell type escapes immunological barrier during transplantation in mouse:

(A) Mesenchymal stem cell

(B) Embryonic stem cell

(C) Hematopoietic stem cells

(D) Neural stem cells

System Biology & Bioinformatics(Ph.D.)

1.	What is full form of RCSB?										
	(A)	Research co	ollaborat	or for structura	l bioinfo	ormatics					
	(B)	Research co	ollaborat	ion for structur	al bioint	formatics					
	(C)	Research co	ontributo	ry for structura	l bioinfo	ormatics					
	(D)	Research co	ontributio	on for structura	l bioinfo	ormatics					
2.	What	makes BLAS	T faster	than FASTA?							
	(A)	Processor s	peed of t	he computer	(B)	Hash table lo	okup				
	(C)	Database si	ze	-	(D)	E value	-				
3.	Gen l	oank file form	at is DN	A centric repor	t becaus	se of					
	(A)	Coding regi	ion		(B)	Decoded regi	on				
	(C)	Qualifier			(D)	CDS					
4.	What	What is the difference between RefSeq and GenBank?									
	(A)	RefSeq incl	udes pub	olicly available	DNA so	equences					
	(B)	GenBank in	icludes n	on redundant c	curated d	lata					
	(C)			are derived fro							
	(D)	RefSeq seq	uences a	re derived from	n GenBa	nk					
5.	ASN	.1 is computer	· languag	e which is?							
	(A)	Cross-platform dependent									
	(B)	Machine-readable only									
	(C)	Human-readable and machine-readable									
	(D)	(D) Human-readable only									
6.	GI nu	ımber in NCB	I is								
	(A)	Gen Info Id	entifier		(B)	Gene Info Inc	dent				
	(C)	Gene inform	nation Id	lentity	(D)	Genome Iden	tifier				
7.	The I	Pitch/turn of h	elix obse	rved generally	in B-DI	NA structures is	3				
	(A)	33.3	(B)	33.2	(C)	33.1	(D)	33.4			
8.	The r	najor groove o	of B-DN	A structures is							
	(A)	Narrow	(B)	Shallow	(C)	Deep, narrow	(D)	Wide, shallow			
9.	What	is VRML									
	(A)	Visual Real	Modelii	ng Language	(B)	Visual Realit	y Mode	el Language			
	(C)	Virtual Rea	l Modeli	ng Language	(D)	Virtual Reali	ty Mod	eling Language			
10.	Whic	h of the follow	wing mos	st accurately de	etermine	d using molecu	lar moo	deling?			
	(A)	Molecular of	orbital en	ergies	(B)	Minimum en	ergy co	nformation			

	(C)	Electrostatic p	ootentials		(D)	Energy	
11.		hi-Psi scatter di	_	a			
	(A)	Ramachandra	n plot		(B)	Chi plot	
	(C)	Scatter plot			(D)	Prediction plot	
12.	Whicl	h factor distingu	uish betwe	een sensitivit	ty in BL	_AST	
	(A)	P value only			(B)	E value only	
	(C)	P & E value			(D)	P or E value	
10							
13.		SCAN develope	•		(D)		
	(A)	Christopher B	-		(B)	Christopher rode Sa	muel
	(C)	Christopher ro	ode		(D)	Christopher karlin	
14.	How	Sequence filteri	ng in BLA	AST help in f	ast data	abase searching	
	(A)	Searches for I	_	1	(B)	Searches for Repeat	S
	(C)	Both A & B			(D)	None of the above	
1 =			~	~			
15.	_	SEG and PSEG			(C)	Coords records (D)	Evolve
	(A)	Sensitivity	(B) S	Specificity	(C)	Search result (D)	E value
16.	Many	genes involv	ed in na	thogenicity	are loc	cated in defined co	ntinuous regions
	•	_	-			C content from othe	_
		ne, suggesting t					1
	(A)	Horizontal ge	•		C		
	(B)	Gene duplicat	tion and su	ubsequent mu	ıtation		
	(C)	Protection fro	•				
	(D)	Increase in the	e rate of n	nutation of su	iccessiv	e GC pairs	
17.	Danam		d:660 m 600 m		atui a la a		
17.	(A)	netric bootstrap It uses simula		-			
	(A) (B)	It uses simula				1	
	(C)	It uses simula				in replicate	
	(D)	It do not uses	_			ch	
	, ,			•			
18.	Menti	on the type of t					
			$C_{12}^{H}_{22}$	$_{2}^{O}_{11} + H_{2}^{O} -$	$\rightarrow C_{6}H_{1}$	$_{2}^{O}_{6} + C_{6}^{H}_{12}^{O}_{6}$	
	(A)	Synthesis	(B) I	Hydrolysis	(C)	Dehydration (D)	Hydrogenation
19.	Volue	of coefficient of	of kurtosis	for a Norma	al distrib	oution is	
17.	(A)	Positive		s for a Norma Negative	u disuri (C)	Equal to one (D)	Equal to three
	(A)	1 0311110	(D) 1	105ative	(0)	Equal to one (D)	Equal to tillee
20.	The N	Iorthern blotting	g techniqu	e depends or	1		
	(A) Similarities between the sequences of probe DNA and experimental DNA						

	(B) Similarities between the sequences of probe RNA and experimental RNA										
	(C)	Similarities between the protein	sequences	of probe protein and experimental							
	(D)	The molecular mass of p	proteins								
21.		-		te, flight number, place of departure,							
		nation, type of plane and seats avai		± • •							
	(A)	Flight number	(B)	Flight number + place of departure							
	(C)	Flight number + date	(D)	Flight number + destination							
22.	MEG	MEGA phylogenetic software uses									
	(A)	Comupute synonymous and not									
	(B)	Comupute both synonymous an	-	· -							
		(C) Comupute only synonymous and nonsynonymous sites									
	(D)	Comupute only nonsynonymous	s sites								
23.	PSI-I	PSI-BLAST & BLAST?									
	(A)	Different	(B)	Same							
	(C)	Search engine	(D)	Certain Difference							
24.	What	t are the advantages of computer in	n CADD?								
	(A)	Simple & fast	(B)	Simple, short & fast							
	(C)	Complex & slow	(D)	A & B							
25.	Kyte-Doolittle hydropathy plot are?										
	(A)	Used by TGREASE	(B)	Short Prediction							
	(C)	Signaling	(D)	1 dimension plot							
26.	Whic	Which one is correct?									
	(A)	8 bit = 10 byte	(B)	1024 KB = 1 MB							
	(C)	1024GB = 10 Terabyte	(D)	1024GB = 1 Mega Byte							
27.	Starc	h content of potatoes can be increa	ased by usin	ng a bacterial gene, known as							
	(A)	Sucrose phosphate synthase gen	ie								
	(B)	ADP glucose pyrophosphorylas	e gene								
	(C)	Polygalactouranase gene									
	(D)	None of the above									
28.	Kimu	ıra 2-parameter for Mutational mo	dels for DN	NA determine:							
	(A)	Transversions more likely than									
	(B)	Transitions more likely than tran	nsversions								
	(C)	Transversions vs. transitions									
	(D)	Identify all transitions									
29.	DOT	PLOT uses									

	(A) (C)	Low window and hig Low window and lov	-	(B) (D)	_	encies and high window ow and high stringencies						
30.	Repea	at and inverted repeats	in DNA sequen	ices are	significantly i	dentify 1	by DOT PLOT					
	(A)	Agree	1	(B)	May be	J						
	(C)	Strongly agree		(D)	Not possible							
31.	Norm	al distribution require	for statistically	signific	cation?							
	(A)	1572 change amino										
	(B)	71 groups of PAM										
	(C)	Entropy of PAM										
	(D)	None of the above										
32.	Full f	form of SAGE										
	(A)	Serial analysis of gen	ne expression									
	(B)	Series analysis of ge	ne expression									
	(C)	· · · ·										
	(D)	(D) Segregated analysis of gene expression										
33.	Signi	ficant of pair sequence	alignment is no	ot possi	ble without sco	oring ma	ıtrix.					
	(A)	Statement is correct		(B)	Statement is	incomp	lete					
	(C)	Statement is no univ	ersal	(D)	Statement is	justified	1					
34.	In prokaryotes, just before the cell divides, the two daughter genomes are attached side by side to the											
	(Å)	Cell membrane		(B)	Replication of	origin						
	(C)	Centromeres		(D)	Equatorial pl	-						
35.	Charge-charge relationship of noncovalent interactions to the distance separating the interaction molecules is											
	(A)	1/r (B)	$1/r^2$	(C)	$1/r^3$	(D)	1/r ⁴					
36.	LOD	score										
	(A)	Statistical estimation	1	(B)	Establish lin	kage bet	ween two loci					
	(C)	None		(D)	A & B	C						
37.	What	is the range of sample	size used in ST	S-PAC	FE methods							
	(A)	Micrograms (B)	Naonograms		Picograms	(D)	Milligrams					
20	****											
38.		coined the term mitosi	S	(D)	.							
	(A)	Strasburger	: ~	(B)	Flemming							
	(C)	Strasburger & Flemi	ning	(D)	Clamming							
39.		neric structures are?										
	(A)	Different phi & psi b		chain								
	(B)	Same psi but differ i	n side chain									

(C) (D)		ame phi & psi but differ in side chain ame phi but differ in side chain								
(A) (C)	All alpha helic Four alpha & t	ees four bet		(B) (D)	Four alpha &		eta helices			
Macro (A)	molecular ther Pressure	modyna (B)	amics do not de Entropy	als with (C)	r Free energy	(D)	Surface			
DH5 a (A) (C)	alpha Plasmid DNA is Positively supercoiled Early supercoiled			(B) (D)	Negatively supercoiled Supercoiled					
Linkin (A)	g number of Dl Topology	NA deso (B)		(C)	Model	(D)	Flexibility			
Phylog (A)	genetics analysi Homology	s are no	ot based on Para logy	(C)	Orthology	(D)	Xenology			
Which (A)	of these amino Glycine	acids i	s highly conser Alanine	ved & a	abounded in nat Both	ture? (D)	None			
Triad t (A) (B) (C) (D)	Force field, P Force field, M Force field, me	aramete inimiza olecular	er sets, moleculation algorithm,	ar mech Parame	eter sets					
Which (A)	is second gene MMFF	ration f (B)	orce field MM Family	(C)	AMBER	(D)	AMBER 2.0			
How n (A)	nany copies of $10^3 - 10^4$	mitocho (B)	ondria is presenting 10 ² - 10 ³	t in an e	eukaryotic cell 1000	(D)	10 ⁶ - 10 ⁷			
Minim (A) (C)	Statement is co	orrect	•	active (B) (D)	State is incom	plete	odel			
Which (A) (C)	Citrulune			(B) (D)			alanine			
	Beta G (A) (C) Macro (A) DH5 a (A) (C) Linkin (A) Phylog (A) Which (A) Triad t (A) (B) (C) (D) Which (A) How n (A) Minim (A) (C)	Beta Globin fold cons (A) All alpha helic (C) Four alpha & Macro molecular ther (A) Pressure DH5 alpha Plasmid D (A) Positively sup (C) Early supercoid Linking number of DM (A) Topology Phylogenetics analysis (A) Homology Which of these aminos (A) Glycine Triad tools in molecul (A) Force field, P (B) Force field, M (C) Force field, m (D) All of the above Which is second genes (A) MMFF How many copies of M (A) I0 ³ - 10 ⁴ Minimum energy con (A) Statement is c (C) Statement is n Which of them are ran (A) Citrulune	Beta Globin fold consist of (A) All alpha helices (C) Four alpha & four beth Macro molecular thermodyna (A) Pressure (B) DH5 alpha Plasmid DNA is (A) Positively supercoiled (C) Early supercoiled Linking number of DNA desc (A) Topology (B) Phylogenetics analysis are not (A) Homology (B) Which of these amino acids in (A) Glycine (B) Triad tools in molecular mod (A) Force field, Paramete (B) Force field, Minimizat (C) Force field, molecular (D) All of the above Which is second generation for (A) MMFF (B) How many copies of mitochology (A) 10 ³ - 10 ⁴ (B) Minimum energy conformatic (A) Statement is correct (C) Statement is not justification of them are rare amino (A) Citrulune	Beta Globin fold consist of (A) All alpha helices (C) Four alpha & four beta helices Macro molecular thermodynamics do not de (A) Pressure (B) Entropy DH5 alpha Plasmid DNA is (A) Positively supercoiled (C) Early supercoiled Linking number of DNA describe (A) Topology (B) Conformation Phylogenetics analysis are not based on (A) Homology (B) Para logy Which of these amino acids is highly conser (A) Glycine (B) Alanine Triad tools in molecular modeling consist of (A) Force field, Parameter sets, molecular (B) Force field, Minimization algorithm, (C) Force field, molecular dynamics, par (D) All of the above Which is second generation force field (A) MMFF (B) MM Family How many copies of mitochondria is present (A) 10 ³ - 10 ⁴ (B) 10 ² - 10 ³ Minimum energy conformation is always an (A) Statement is correct (C) Statement is not justify	Beta Globin fold consist of (A) All alpha helices (B) (C) Four alpha & four beta helices (D) Macro molecular thermodynamics do not deals with (A) Pressure (B) Entropy (C) DH5 alpha Plasmid DNA is (A) Positively supercoiled (B) (C) Early supercoiled (D) Linking number of DNA describe (A) Topology (B) Conformation (C) Phylogenetics analysis are not based on (A) Homology (B) Para logy (C) Which of these amino acids is highly conserved & a (A) Glycine (B) Alanine (C) Triad tools in molecular modeling consist of (A) Force field, Parameter sets, molecular mech (B) Force field, Minimization algorithm, Parameter (C) Force field, molecular dynamics, parameter (D) All of the above Which is second generation force field (A) MMFF (B) MM Family (C) How many copies of mitochondria is present in an etal (A) 10 ³ - 10 ⁴ (B) 10 ² - 10 ³ (C) Minimum energy conformation is always an active (A) Statement is correct (B) (C) Statement is not justify (D) Which of them are rare amino acid (A) Citrulune (B)	Beta Globin fold consist of (A) All alpha helices (B) Eight alpha he (C) Four alpha & four beta helices (D) Four alpha & Macro molecular thermodynamics do not deals with (A) Pressure (B) Entropy (C) Free energy DH5 alpha Plasmid DNA is (A) Positively supercoiled (B) Negatively supercoiled (C) Early supercoiled (D) Supercoiled Linking number of DNA describe (A) Topology (B) Conformation (C) Model Phylogenetics analysis are not based on (A) Homology (B) Para logy (C) Orthology Which of these amino acids is highly conserved & abounded in nat (A) Glycine (B) Alanine (C) Both Triad tools in molecular modeling consist of (A) Force field, Parameter sets, molecular mechanism (B) Force field, Minimization algorithm, Parameter sets (C) Force field, Minimization algorithm, Parameter sets (C) Force field, molecular dynamics, parameter sets (D) All of the above Which is second generation force field (A) MMFF (B) MM Family (C) AMBER How many copies of mitochondria is present in an eukaryotic cell (A) 10 ³ - 10 ⁴ (B) 10 ² - 10 ³ (C) 1000 Minimum energy conformation is always an active conformation of (A) Statement is correct (B) State is incom (C) Statement is not justify (D) None of the all Which of them are rare amino acid (A) Citrulune (B) Selenoacedities	Beta Globin fold consist of (A) All alpha helices (D) Four alpha & three beta helices (D) Free energy (D) Macro molecular thermodynamics do not deals with (A) Pressure (B) Entropy (C) Free energy (D) DH5 alpha Plasmid DNA is (A) Positively supercoiled (B) Negatively supercoiled (C) Early supercoiled (D) Supercoiled Linking number of DNA describe (A) Topology (B) Conformation (C) Model (D) Phylogenetics analysis are not based on (A) Homology (B) Para logy (C) Orthology (D) Which of these amino acids is highly conserved & abounded in nature? (A) Glycine (B) Alanine (C) Both (D) Triad tools in molecular modeling consist of (A) Force field, Minimization algorithm, Parameter sets (C) Force field, molecular dynamics, parameter sets (D) All of the above Which is second generation force field (A) MMFF (B) MM Family (C) AMBER (D) How many copies of mitochondria is present in an eukaryotic cell (A) 10 ³ - 10 ⁴ (B) 10 ² - 10 ³ (C) 1000 (D) Minimum energy conformation is always an active conformation of the m (A) Statement is correct (B) State is incomplete (C) Statement is not justify (D) None of the above Which of them are rare amino acid (A) Citrulune (B) Selenoacedities			

(ZOOLOGY)

1. Which of the following is not part of the triad of epidemiology?												
	(A)	Host (B) Age	ent	(C)	Environment	(D)	Time					
2.	Cydip	pid larva is a notable featur	e of phylum	ı								
	(A)	Echinodermata		(B)	Mollusca							
	(C)	Porifera		(D)	Ctenophora							
3.	Which	n tracheal system is present	in dipteran	pupae)							
	(A)	Propneuistic		(B)	Metapneuistic							
	(C)	Holopneuistic		(D)	Hemipneuistic	,						
4.	Which	of the following nucleotid	le bases is no	ever pr	esent in genetic	code?	•					
	(A)	Adenine		(B)	Uracil							
	(C)	Thymine		(D)	Cytosine							
5.	Grass	Grass carp is										
	(A)	Ctenopharyngodon idellu	S	(B)	Cyprinus carp	io						
	(C)	Hypophthalmichthys moli	trix	(D)	Oreochromis 1	nossan	nbicus					
6.		ich sequence the following rosophila	g proteins ar	re activ	vated as prerequ	uisite f	or ventr	alisation				
	(A)	Snake, Spätzle, Easter		(B)	Snake, Easter,	Spätzl	le					
	(C)	Spätzle, Snake, Easter		(D)	Easter, Snake,	-						
7.	Which of the following is not a G-Protein coupled receptor?											
	(A)	Rhodopsin		(B)	Muscarinic acetylcholine receptor							
	(C)	Nicotinic acetylcholine re	eceptor	(D)	Thyrotropin re	eceptor		-				
8.	The he	oney bee drones										
	(A)	Have a mother and a father	er									
	(B)	Have sisters but no brothe	er									
	(C)	Have no father but have a	grandfather	r								
	(D) Have only grandmother and grandfather											
9.	In <i>C</i> . 6	elegans, pharynx is generate	ed by two se	ets of c	ells derived fro	m						
	(A)	ABp and E cells		(B)	ABa and E cel	lls						
	(C)	ABa and EMS cells		(D)	ABp and EMS	Ss						
10.	The m	edian dorsal arm of epicrar	nial suture is	s terme	d							
	(A)	Metopic suture		(B)	Epistomal sutu	ıre						
	(C)	Fulturae		(D)	Gula							
11.	Which	n of the following isoenzym	nes is the firs	st indic	cator of myocar	dial int	farction?	,				

	(A)	CPK ₁	(B)	CPK ₂	(C)	CPK ₃	(D)	CPK ₄			
12.	Which (A) (B) (C) (D)	of the following Genetic map Physical map Linkage analy Results of cro	sis betw			ween two loci o	on a chr	omosome?			
13.		lecules?	Liquid matogra n Chron	Chromatograp phy natography		ermining the n	nolecula	ar weight of the			
14.	Which (A) (B) (C) (D)	ch of the following are all game fish? Salmo trutta fario, Schizothorax richardsonii and Tor putitora Salmo trutta fario, Schizothorax richardsonii and Cyprinus carpio Catla catla, Labeo rohita and Cirrhinus mrigala Ctenopharyngodon idellus, Cyprinus carpio and Barilus barila									
15.	Who is	s considered as John Wisnar		er of epidemic Louis Pasteur		John Snow	(D)	John Smith			
16.	In vertebrate visual receptors which of the following secondary messengers plays a key role										
	(A)	AMP	(B)	Ca++	(C)	cGMP	(D)	Phospholipids			
17.	Which (A) (C)	of the followin Corpus cardia Corpus striatu	cum	emporary endo	crine gl (B) (D)	and in human b Corpus luteun Corpus albica	n				
18.		nive B cell cont	ains wh	ich type of anti							
	(A) (C)	IgE and IgA IgM			(B) (D)	IgM and IgE IgG1 and IgG	2				
19.	What is (A) (B) (C) (D)	It is thought to It is thought to	be der be der be der	ived from a ret ived from a pro ived from a cel	rovirus otein co llular no	ding gene on coding RNA	molecu	ıle			
20.	Gill ne (A) (B)	It is thought to be derived from a DNA virus ets are mostly used in In rivers where the water current is very fast In shallow waters where depth is not more than a feet									

21.	(C) (D) Which (A) (B) (C) (D)	In torrential st of the followin Barr body Hox genes of rRNA transcri	treams ng is an insects ibing re	es where the wa example of con gion of genome f chromosome	nstitutiv	-	atin?	
22.	Foetus (A)	belong to which Xenograft	ch type (B)	of transplant Isograft	(C)	Autograft	(D)	Allograft
23.	Edmar (A) (B) (C) (D)	Determination Determination	n of amin of nuc n of ami	or the ino acid sequen leotide sequenc ino acid sequen leotide sequenc	ce of the	e DNA the C-terminal	-	
24.	The vo	olume of blood Stroke's volum Cardiac volum	me	he ventricle aft	er ventı (B) (D)	ricular systole i End systolic v End diastolic	olume	
25.	In which cytopla (A)		wing an (B)	imals germ cell Frogs	s are no	ot determined b	y mater (D)	ial in egg Insects
26.		rred to nitroce	ellulose				d antibo	electrophoresis, ody probe. This
	(C)	Western blott	_		(D)	RT-PCR	ung	
27.	-	yndrome in hu osomes is calle Klinefelter's	ed	in which an i	ndividu (C)	al's somatic o	cells co	ntain the XXX Superfemale
28.	` /		opsy fo	or diagnosis of Toronto Diaphragm	Γrichine			Liver
29.	Contra (A) (B) (C) (D)	Downward me Elevation of the	ovement he ribs a	t of diaphragm	d sternu	m		
30.	In hum (A)	•		arkitt's lymphor of chromosome		nromosome 14		

31.	 (B) Translocation of part of chromosome 9 to chromosome 22 (C) Reciprocal translocation of parts of chromosome 15 and 17 (D) Translocation of part of chromosome 18 to chromosome 14 Berlese filter chamber in the midgut of insects is a modification for 									
	(A)	Conserving w								
	(B)	Rapidly remo		iter						
	(C) Sieving solid food particles									
	(D)	_		and non-digest	tihla ma	ntarials				
	(D)	Separating the	gestible	and non-digest	noie ina	ucitais				
32.	In new	born infants, l	naemoly	tic disease can	be limi	ited by				
	(A)		•	ecific allergens		J				
	(B)	Allergens of s	-	-						
	(C)	Administratio								
	(D)			i-Rh antibodie	0					
	(D)	Administratio	ii oi aiii	i-Kii aiitibodie	8					
33.		ebrate genes, to			region	s that contain C	pG isla	nds are		
	(A)	Methylation	- r -		(B)	Myristylation				
	(C)	Phosphorylati	on		(D)	Acetylation				
	~									
34.						subsegments are				
	(A)	Euplantulae	(B)	Basitarsus	(C)	Empodium	(D)	Basicoxite		
35.	The pr	resence of the p	harynge	eal teeth is a ke	y chara	cter of				
	(A)	Catfishes			(B)	Carps				
	(C)	Eels			(D)	Snakehead fis	h			
36.	Δ high	o concentration	of fruct	tose is present i	in the se	ecretion of				
50.	A high concentration of fructose is present in the secretion of (A) Prostate (B) Seminal vesicle									
		Epididymis			` /	Vas deferens	10			
	(C)	Epididyillis			(D)	v as deferens				
37.	Karno	vsky's fixative	used in	electron micro	scopy i	S				
	(A)	Glutaraldehyd	le							
	(B)	Paraformaldel	hyde							
	(C)		•	araformaldehy	de					
	(D)	•		and Uranyl acet						
38.	In Eni	demiology "Qu	iarantin	e" refers to:						
50.	(A)	•		eased individua	1					
		-								
	(B)	-		vidual exposed						
	(C)	-		eased individua ased individual		s raininy				
	(D)	rreatment of	me aise	ascu murvidual	l					
39.	Which	of the following	ng gene	is required for	SOS D	NA repair in pr	okarvo	tes?		
· · ·	(A)	MutS	(B)	UvrA	(C)	UmuD	(D)	MutH		
	()		(-)		(-)		(-)			

40.	Detec	tion of odour is		•				
	(A)	Ungated Na c	hannels	3	(B)	Gated Na- cha	annels	
	(C)	Gated cation	channel	S	(D)	G-protein cou	pled re	ceptors
41.	Notop	terus notopteru	is and C	Chitala chitala	are com	monly referred	as	
	(A)	Eels	(B)	Carps	(C)	Featherbacks	(D)	Catfishes
42.	Which	n of the following	ng is no	t an actin bind	ling prot	ein?		
	(A)	Formin	(B)	Filamin	(C)	Profilin	(D)	Laminin
43.	All of	the following of	characte	eristics are seen	n in the	stools in amoeb	ic dyse	ntery of
	(A)	RBCs in clum			(B)	Charcot-Leyden crystals		
	(C)	Pyknotic bodi	ies		(D)	Ghost Cells		
44.	The b	•				is being replic		•
	(A)	Phase contras		scopy	(B)	Thin layer chromatography		
	(C)	Autoradiogra	phy		(D)	Gel electroph	oresis	
45.	immu subsec (A) (B)	ne system or by quent clinical sy Gametogony Secondary ex	y therap ymptom	y and their nur	mbers in			ot eliminated by crease again with
	(C) (D)	Replase Recrudescence	ee					
46.	A type (A)	e of egg tube in Acrotropic	insects (B)	in which vitel Polytropic	larium c (C)	contains eggs or Meroistic	nly (D)	Panoistic
47.	Basic	Keratins are ty	-					
	(A)	Type II intern			(B)	Type III inter		
	(C)	Type IV inter	mediate	efilaments	(D)	Type V intern	nediate	filaments
48.			_					o division stage ub unit of MPF
		n one of the foll		-		_	•	
	(A)	Cyclin	(B)	Cdk	(C)	Proline	(D)	Ubiquitin
49.	What	are cryptic splie	ce sites	?				
	(A)	These are spli	ice sites	that are used i	in some	cells but not in	others	
	(B)			that are alway				
	(C)			that are involv RNA molecule		ternative splici	ng resu	lting in removal
	(D)	These are the	sequen	ces within exo		rons that resem	ble con	sensus splicing
				ue splice sites	_			
50.		ophore larva is	-			D-1- 1 0	0 1	1-
	(A)	Amphineura d	-	-	(B)	Pelecypoda &	-	-
	(C)	Pelecypoda &	ι Ampn	шеига	(D)	Amphineura d	x scap	пороца

Public Health(Ph.D)

1.	What (A) (B) (C) (D)	is Gini Index: Measure of distribution of Incommeasure of Distribution of Dist	me among h me among h	ouseholds within a country touseholds between States						
2.	Corpu (A) (B) (C) (D)	Measurement of Obesity Measurement of BP Measurement of Cholesterol Measurement of Depression								
3.	AIDS (A) (B) (C) (D)	G-causing HIV identifies its target Gated Channels in the membrar Carbohydrates of Glycocalyx Apoproteins in the coated pits o Low density lipoproteins in cell	nes f membrane	es						
4.	What (A) (B) (C) (D)	is the use of Johari Window Studying health effects due to p Studying the interpersonal relati Studying epidemiology Studying common health proble	ions							
5.	Saluto (A) (B) (C) (D)	Is a type of disease Is a term used in Health System Is related with immunization Is a process of improvement in								
6.	Which efficies (A) (B) (C) (D)	<u>-</u>	y require th	ne smallest sample size because of its						
7.	Who : (A) (C)	introduced the term 'stateless soci Paul Bohannan A. Powell	(B) (D)	E. Evans-Pritchard A. Giddens						
8.	What (A) (C)	is the marriage of a widow to her Widow marriage Polyandry	deceased h (B) (D)	usband's brother termed as? Sororate Levirate						
9.		are the minimum number of ntage of LBW babies: 500 babies 10000 babies	newborns (B) (D)	should be examined for calculating 1000 babies 100000 babies						

10.	The term (A) (B) (C) (D)	rm 'family size' refers to: Total number of female children bor Total number of persons in a family Total number of children a woman ha Average No of children a woman ha	as born	n at a point in time
11.	Which (A) (C)	of the following method is used for c PERT Analysis NPP	ontrace (B) (D)	eptive efficacy: Life Table Analysis PPV
12.		one is incorrect regarding, angle of injection during immunization: Intra-dermal injection:15° (BCG) Sub-cutaneous: 45° (Measles, MMR Sub- cutaneous: 45° (DPT, DT, TT, Intra-muscular: 90° (DPT, DT, TT, I) Hepatit	
13.	Which (A) (B) (C) (D)	As the 5% of Birth Weight at any given As the 10% of Birth Weight at any given As the 15% of Birth Weight at any generated As the 15% of Birth Weight at any generated As the 20% of Birth Weight at a	ven Ge iven G iven G	stational age estational age estational age
14.	What is (A) (B) (C) (D)	is Cycle Beads? Emergency Contraceptive Pills (ECF Statistical Method used in MCH Hormonal Contraceptive Natural family planning method	P)	
15.	Pomer (A) (C)	oy Technique is widely used in? Mini Pills Tubal ligation	(B) (D)	IUD Coitus interrupts
16.		is Catch-Up Growth? Under growth, according to WHO growth than normal growth to recove Onset of growth in a growth curve Birth injury		
17.	What a (A) (B) (C) (D)	are the recommendations of school he 1 Privy for 50 Children and 1 Urinal 1 Privy for 100 Children and 1 Urinal 1 Privy for 50 Children and 1 Urinal 1 Privy for 150 Children and 1 Urinal	/40 Chi al/60 Cl /100 Cl	ildren hildren hildren
18.	What i	is meant by 'Ring Vaccination'? Vaccine given around 100 meters of	a detec	cted case

	 (B) Vaccine given around 100 yards of a (C) Vaccine given around 200 meters of (D) Vaccine given around 200 yards of a 	a dete	cted case
19.	Which is the major principle of medical of medical professionals must act in the best (A) Justice (C) Non-malfeasance		_ ·
20.	Xenograft is (A) Transplant across species barriers (B) A transplant of tissue from one to one (C) Transplant between genetically idented (D) Transplant from one individual to an	cical (n	
21.	According to COTPA-2003 (Cigarette or an offer for sale, or permit the sale of Cigarette or an educational institution in an area within a rac (A) One hundred yards (C) One hundred feet	arette	or any other tobacco product in any
22.	Which of the following is a nominal variable(A) Blood sugar level(C) Hemoglobin level	e? (B) (D)	Blood Type (A, B, AB & O) Severity (mild, moderate and severe)
23.	Whenever the median is reported as the n variable, the associated appropriate measure (A) Range (C) Interquartile Range		_
24.	Which of the following properties is characteristical distribution? (A) High Skewness (C) Large mean	(B) (D)	ristic of a variable following normal Small variance Symmetry about mean
25.	An investigator wants to draw samples fro random. What sampling method would he cl (A) Stratified random sampling (C) Systematic Sampling		
26.	One way ANOVA is used (A) To compare the means of more than (B) To compare several proportions (C) To test for linear trend (D) To compare ratio of two variances	two gi	roups
27.	The association between two categorical var (A) Scatter plot (C) Dot plot	riables (B) (D)	is best shown in a Bar chart Cross – tabulation of two factors
28.	The equivalent nonparametric test for paired	l't' tes	st is

	(A) (C)	Kruskal-Wall Median test	lis test		(B) (D)	Wilcoxon-sign test	gned ran	k test	
29.	The c measu (A) (B) (C) (D)	res: The nonlinear How mutuall The strength	r relatio y exclus of linea	sive		es (r, pearson'	s correl	ation coefficie	nt
30.	The ai (A) (B) (C) (D)	Investigate a Replace dots Measure exte Describe the	non line in scatte nt of re relation	ression analysicar relationship er diagram by a lationship betwnship in straigle riable from the	between straight een two ht line	t line variables			les
31.	Which low?	among the fo	llowing	g study designs	is effec	ctive, when the	e freque	ncy of disease	is
	(A)	Cohort	(B)	Case control	(C)	Ecological	(D)	Descriptive	
32.	Which (A)	of the followi 7,8,9,10	ing sets (B)	of four number 5,5,5,5	rs has th (C)	e smallest pos 0,0,10,10	sible star (D)	ndard deviatio 0,1,2,3	n?
33.				test was 72th udents received 65				ite the test th	en
34.	Which (A) (B) (C) (D)	It is reasonab Free from per Economical r	ly accurrsonal b	iases			pling?		
35.	The be (A) (C)	est sampling m Area samplin Purposive sar	g	or sampling a p	opulatio (B) (D)	on finite size: Systematic s Quota sampl			
36.	Which (A) (C)	of the followi It is an applie It is a survey	ed resear		n Resear(B)	rch'? It is a quanti It is a popula	•		
37.		write once reans concepts? Subject cente Task centered	red syst		he artic (B) (D)	ele is synonyn Database cer Multimedia	ntered sy	stems	ies
38.	, ,	scale measur	res the	psychological	` ′		ide obje ating	•	lar

39.		esearch study oned as:	carried o	out with the he	lp of da	ta points (eith	er prima	ary or secondary	y)
	(A)		(B)	Observationa	al (C)	Empirical	(D)	Action	
40.		orimary objecti roblem confron Exploratory i Causal resear	ting the esearch	researcher.	(B) (D)	insights into, Conclusive of Descriptive	research		of,
41.	Popul (A)	ation value is o Statistic		Parameter	(C)	Variable	(D)	Core value	
42.		eport submitted is called Thesis Summary rep			(B) (D)	veen data colle Interim repo Article		d presentation of	of
43.	The g (A)	oal for univers	al EHR (B)	adoption is 2020	(C)	 2015	(D)	2014	
44.		ssionals with de Electronic he	ecision i	making tasks?	(B)	Clinical dec	ision sup	and other heal	th
45.	Healtl (A)	h information r HMMS	managen (B)	nent standards AHIMA	began v	with the establi CAHIIM	ishment (D)	of the: ASHIM	
46.		s organizations Health inform	within a		nunity o (B)	r hospital syst Health infor	em? mation ε	_	ly
47.			a define	ed geographic	area and	d governs hea	lth infor	ther health can mation exchang nity? HIT	
48.	What (A) (B) (C) (D)	Systematised System nove	nenclatu nomeno l of med	and for? ore of medicing clature of med licine and clini clature of med	icine and cal term	d coding terms			
49.	To acrequir (A) (B) (C) (D)	es? Unique patie Patient identi	nt identi fication ge to the	fication syster system e way the NHS	n	ectronic patie	nt recoi	rds in the NH	IS

- **50.** Human metabonomics is the study of?
 - (A) Study of human metabolic responses to environmental changes
 - (B) Study of metabolic responses to drugs and diseases
 - (C) Study of metabolic responses to drugs, environmental changes and diseases
 - (D) Study of human metabolic responses to aging

Biotechnology(Ph.D.))

1.		activity defin		_								
	(A)	Addition of nu			_							
	(B) (C)	Degradation of Sequestration		•								
	(D)	• •										
2.	` '	n of the followi	-		-	-		e bacteria				
_,	(A)	Peptidoglycan	_	Teichoic a		Lipid A	(D)	Porins				
3.	, ,	the incorrect of	, ,		, ,	1	, ,					
	(A)	Biosafety leve			ilis							
	(B)	Biosafety leve				ulosis						
	(C)	Biosafety level 3 Bacillus anthracis										
	(D)	Biosafety leve	el 4 Eb	oola virus								
4.	Which	n of the followi	_									
	(A)	Milk is pasteu	rized at	62.8°C for	30 minu	tes						
	(B)	Pasteurization	kills C	oxiella bur	netii							
	(C)	Pasteurization	temper	ature depe	nds on the	e heat resista	ance of M.tul	berculosis				
	(D)	Pasteurisation	increas	es the shel	f life of m	ilk						
5.	A poly	peptide of 90l	kDa wil	l be coded	by a gen	e of the size	e					
	(A)	0.245 kb	(B)	2.454 kb	(C)	24.54 kb	(D)	1.5 kb				
6.		n of the followi				omplex						
	(A)	Cytochrome c	-	-	-							
	(B)	Cytochrome c, Bcl-2 and procaspase-9										
	(C)	Cytochrome c										
7	(D)	Cytochrome c	-		-	1:	4. 4					
7.	(A)	does not hold It causes large			•	O	raung trans	genic animais				
	. ,	_					anaas flanks	d by lawD sites				
	(B)					-		d by loxP sites				
	(C)	It can remove										
	(D)	It creates a	more	efficient	way to	integrate	useful trans	sgene into the				
		chromosomes										
8.	Genet	ically modified	d papay	a exhibits								
	(A)	Herbicide tole	erance		(B)	Insect pr	rotection					
	(C)	Virus resistan			(D)	Early rip	ening					
9.		njal cultivation				_						
	(A)	Canada	(B)	Banglades	sh (C)	India	(D)	Philippines				

10.		ch of the tries?	following	genetically	modified	crop is	cultivated	in maximum
	(A)	Cotton	(B)	Maize	(C)	Rice	(D)	Soyabean
11.	Natio	nal Green	Tribunal l	nas banned t	he use of p	olastic bag	below the	thickness of
		40 micron	(B)	50 micron	(C)	60 micron		80 micron
12.	A bac	cterial pop	ulation gro	wing expone	entially at	a specific g	growth rate	e of 1.25 / h
	will h	ave a gene	eration time	e of				
	(A)	0.55 h	(B)	0.65 h	(C)	0.85 h	(D)	1.55 h
13.	The p	promoter f	or heterolo	gous gene hy	yperexpre	ssion in pE	ET28a plasi	mid vector is
	(A)	P _L promo	oter of lamb	da phage	(B)	trp promo	oter	
	(C)	T7 phage	promoter		(D)	lac promo	ter	
14.		-		<i>oli</i> which m	utations a	llow better	r yields and	l stability of
		ecombinan	-		(D)	A and	J., ., I	
	(A)	rec A and	nd rec A1		(B) (D)	gyrA and supF 44 a		
15.	(C)			ture with Tr	` /	•		namation of
13.	(A)			ure with 11 Jueous phase				parauon or
	(A) (B)			ise,DNA in it		_		in organic
	(C)	-	aqueous pha	se,DNA and	proteins in	n interphase	e and lipids	in organic
	(D)	RNA in t	the organic	phase,DNA i	n interphas	se and prote	eins in aque	ous phase
16.	Craig	g Venter ha	as not been	associated v	vith which	of the foll	owing	
	(A)	Sequenci	ng of <i>H.infl</i>	<i>uenza</i> genom	ne			
	(B)	Sequenci	ng of C.ele	gans genome				
	(C)	Developi	ng Expresso	ed Sequence	Tags (EST	's)		
	(D)	•		imal bacteria	_			
17.	In wl	nich of the	following s	ituations NC	SS would l	be most us	eful	
	(A)	_		IA samples for				
	(B)	•		itial gene exp			-	
	(C)			nissense muta				
	(D)		_	sistance to ri	•			
18.		_		has highest			_	
	(A)	Glycine,			(B)	Serine, glu		
	(C)	Serine, ly			(D)	Lysine,glu	ıtamine	
19.				r is wrongly	matched			
	(A)	IFN α	Leuco	ocytes				
	(B)	IFN B	Fibro	blasts				
	(C)	$TNF\alpha$	Activ	ated T cells				

	(D)	CEA	Liver	cells								
20.	Wha	t is not true	for perox	isomes								
	(A)	In plants	and animal	it is involve	d in conve	rting fatty ac	ids to suga	ars				
	(B)	In liver co	ells it detox	ifies toxic m	olecules							
	(C)	It is self replicating membrane bound organelle										
	(D)	It imports	proteins a	nd lipids fro	m cytosol							
21.	Whic	ch of the fol	lowing on	cogenes is n	ot involve	d in signal tı	ansductio	on				
	(A)	src	(B)	ki –ras	(C)	n - ras	(D)	jun				
22.	Marl	Mark the correct statement										
	(A) (B)	Only helices are involved in DNA –protein interactions The many types of leucine zipper proteins can all form heterodimers with one										
	(C)	another The strength and specificity of DNA protein interaction can be adjusted by										
	(D)	changing the number of zinc fingers repeats Helix turn helix motif of bacterial gene regulatory proteins is often embedded in same structural context										
23.	Whic				the stabil	ity of mRNA	1					
	(A)		U	tail to 100 re		·						
	(B)	Removal	of 3' tail le	eading to dec	apping at	5'end						
	(C)	Nucleotide sequence at 5'UTR										
	(D)	Pyrimidir	ne rich resid	dues at 3' U	ΓR							
24.		Which technique would be suitable to determine the transcription binding sites on										
	globa (A)	al scale Deletion	manning		(B)	DNA foot	nrinting					
	(C)		nome sequ	encing	(D)	ChIP- seq	printing					
25.	` ′	C	1	roof readin	` '	1						
23.	(A)		_	nd DNA pol	_	oved by						
	(B)	MutS,Mu	tL,MutH a	nd DNA pol	ymerase II	I						
	(C)	MSH,ML	H and DN	A polymeras	e I							
	(D)	Rec A,Re	c BCD,UM	IC and DNA	polymera	se III						
26.	Puro	mycin whic	ch is comm	only used in	the studi	ies of proteir	ı translati	on, causes				
	(A)	Nonspeci	fic binding	of aminoacy	l tRNA to	A site		,				
	(B)	Release o	f EF-G-GI	OP from ribo	some							
	(C)	Inhibition	of peptidy	l tranferase	activity							
	(D)	Exit of gr	owing poly	peptide chai	n from rib	osome						
27	Whic	eh statomon	t is true fo	r X Chrom	ocomo							

` '	•								
(B)	•								
` '					ū	•			
` ′	-								
				ith high	dose of an a	ntigen,i	n the secon	dary	
_	• •			dies main	ly IgG				
` ′	•	_							
	•	·			•				
	· ·		_						
` ′						scade			
		_			inproment cu	ocau c			
(B)	IgM molecules circulating in the serum								
(C)	A single mole	ecules o	f IgG bound	to the su	rface of RBC				
(D)	Two molecule	es of Ig	G bound at a	distance	on the surface	of RBC	l		
In 201	19, the UN clin	nate su	mmit is sche	eduled to	be held in				
(A)	Germany	(B)	India	(C)	Brazil	(D)	Chile		
_			e Montreal	protocol	relates to t	he regu	lation of g	lobal	
(A)	CFCs	gout		(B)	HCFCs				
(C)	HFCs			(D)	Methyl bror	nide			
Highl	y acid frits are	e canne	d in which t	ype of ste	eel cans				
(A)	Type L	(B)	Type M	(C)	Type MC	(D)	Type MR		
Rooto		ı be ina	ctivated by	all evcent	f				
Dacte	riai spores can		cuvated by	an except	,				
(A)	Ethanol		ctivated by	(B)	Steam unde	r pressur	re		
	_		ctivated by	_		•	re		
(A) (C) Which	Ethanol Formaldehydehtydehtydehtydehtydehtydehtydehtyd	e o bial c o	ontamination	(B) (D) n is diffic	Steam unde Glutaraldeh ult to detect i	yde n contin	uous cell li		
(A) (C)	Ethanol Formaldehyde	e	·	(B) (D)	Steam unde Glutaraldeh	yde n contin			
(A) (C) Which (A) Serum	Ethanol Formaldehyde h type of micre Bacterial n in cell cult	e obial co (B) ure me	ontamination Fungal edium provi	(B) (D) n is diffic (C) des horn	Steam unde Glutaraldeh ult to detect i Yeast nones which	yde n contin (D) stimula	u ous cell li Mycoplasn	na	
(A) (C) Which (A) Serun except	Ethanol Formaldehyde h type of micro Bacterial n in cell culto t one which in	e obial co (B) ure me hibits g	ontamination Fungal edium provi growth and p	(B) (D) n is diffic (C) des horn promotes	Steam unde Glutaraldeh ult to detect i Yeast nones which differentiatio	yde n contin (D) stimula	nuous cell li Mycoplasn nte prolifer	na	
(A) (C) Which (A) Serun except (A)	Ethanol Formaldehydeh type of micro Bacterial n in cell culto t one which in	e obial co (B) ure me hibits g	ontamination Fungal Edium provi Growth and p	(B) (D) n is diffic (C) des horn promotes (C)	Steam unde Glutaraldeh ult to detect i Yeast nones which differentiatio	yde n contin (D) stimula on (D)	nuous cell li Mycoplasn nte prolifer IGF II	na ation	
(A) (C) Which (A) Serun except (A) In sat	Ethanol Formaldehyde h type of micro Bacterial n in cell culto t one which in	e obial co (B) ure me hibits g	ontamination Fungal Edium provi Growth and p	(B) (D) n is diffic (C) des horn promotes (C)	Steam unde Glutaraldeh ult to detect i Yeast nones which differentiatio	yde n contin (D) stimula on (D)	nuous cell li Mycoplasn nte prolifer IGF II	na ation	
(A) (C) Which (A) Serun except (A) In sat	Ethanol Formaldehydeh type of micro Bacterial m in cell culto t one which in VEGF uerkraut procentation is Leuconostoc	e obial co (B) ure me hibits g (B) luction	ontamination Fungal Edium provice prowth and profile for the sequence of the s	(B) (D) n is diffic (C) des horn promotes (C) nce in wi	Steam unde Glutaraldeh ult to detect i Yeast nones which differentiatio TGFB hich differen	yde n contin (D) stimula on (D) t bacter	nuous cell li Mycoplasm nte prolifer IGF II ria do desi	na ation	
(A) (C) Which (A) Serun except (A) In sat ferme (A)	Ethanol Formaldehyde h type of micro Bacterial n in cell culto t one which in VEGF uerkraut proc entation is Leuconostoc Lactobacillus	e (B) ure me hibits g (B) luction mesent	ontamination Fungal Edium provingrowth and particular folloceticus	(B) (D) n is diffic (C) des horn promotes (C) nce in w	Steam unde Glutaraldeh ult to detect i Yeast nones which differentiatio TGFß hich differen	yde n contin (D) stimula on (D) t bacter	Mycoplasm Mycoplasm IGF II ria do desi meris and	na ation rable then	
(A) (C) Which (A) Serun except (A) In sat	Ethanol Formaldehydeh type of micro Bacterial m in cell culto t one which in VEGF uerkraut procentation is Leuconostoc	e obial co (B) ure me hibits g (B) luction mesent pentoa	ontamination Fungal Edium proving FGF FGF The sequence following the security of the security	(B) (D) n is diffic (C) des horn promotes (C) nce in w	Steam unde Glutaraldeh ult to detect i Yeast nones which differentiatio TGFß hich differen	yde n contin (D) stimula on (D) t bacter	Mycoplasm Mycoplasm IGF II ria do desi meris and	na ation rable	
	respo (A) (B) (C) (D) Whice (A) (B) (C) (D) In 20: (A) Kagai warm (A) (C) Highl (A)	(B) Maternally de (C) Heterochroma (D) Genes respon If a set of four mic response they will p (A) Low affinity, (B) Low affinity, (C) High affinity, (D) High affinity, Which of the follow (A) A single mole (B) IgM molecule (C) A single mole (D) Two molecule In 2019, the UN clin (A) Germany Kagali Amendment warming by phasing (A) CFCs (C) HFCs Highly acid frits are (A) Type L	(B) Maternally derived X (C) Heterochromatized X (D) Genes responsible for If a set of four mice is in response they will produce (A) Low affinity, heterogy (B) Low affinity, heterogy (C) High affinity, homogy (C) High affinity, homogy (D) High affinity, homogy (A) A single molecule of (B) IgM molecules circulate (C) A single molecules of (D) Two molecules of IgI (A) Germany (B) Kagali Amendment of the warming by phasing out (A) CFCs (C) HFCs Highly acid frits are cannel (A) Type L (B)	(B) Maternally derived X Chromosor (C) Heterochromatized X Chromosor (D) Genes responsible for pigmentation of the set of four mice is immunized were response they will produce (A) Low affinity, heterogenous antibout (B) Low affinity, heterogenous antibout (C) High affinity, homoogenous antibout (D) High affinity, homoogenous antibout (D) High affinity, homogenous antibout (E) High affinity, homogenous antibout (E) A single molecule of IgM bound (B) IgM molecules circulating in the (C) A single molecules of IgG bound (D) Two molecules of IgG bound at a In 2019, the UN climate summit is school (A) Germany (B) India Kagali Amendment of the Montreal warming by phasing out (A) CFCs (C) HFCs Highly acid frits are canned in which the (A) Type L (B) Type M	(B) Maternally derived X Chromosome is heter (C) Heterochromatized X Chromosome is react (D) Genes responsible for pigmentation are loc If a set of four mice is immunized with high response they will produce (A) Low affinity, heterogenous antibodies main (B) Low affinity, heterogenous antibodies main (C) High affinity, homoogenous antibodies main (D) High affinity, homogenous antibodies main Which of the following can activate classical co (A) A single molecule of IgM bound to RBC (B) IgM molecules circulating in the serum (C) A single molecules of IgG bound to the su (D) Two molecules of IgG bound at a distance In 2019, the UN climate summit is scheduled to (A) Germany (B) India (C) Kagali Amendment of the Montreal protocol warming by phasing out (A) CFCs (B) (C) HFCs (D) Highly acid frits are canned in which type of ste (A) Type L (B) Type M (C)	(B) Maternally derived X Chromosome is heterochromatized (C) Heterochromatized X Chromosome is reactivated during (D) Genes responsible for pigmentation are located on X Chr If a set of four mice is immunized with high dose of an a response they will produce (A) Low affinity, heterogenous antibodies mainly IgG (B) Low affinity, heterogenous antibodies mainly IgM (C) High affinity, homoogenous antibodies mainly IgG (D) High affinity, homogenous antibodies mainly IgM Which of the following can activate classical complement can (A) A single molecule of IgM bound to RBC (B) IgM molecules circulating in the serum (C) A single molecules of IgG bound to the surface of RBC (D) Two molecules of IgG bound at a distance on the surface In 2019, the UN climate summit is scheduled to be held in (A) Germany (B) India (C) Brazil Kagali Amendment of the Montreal protocol relates to twarming by phasing out (A) CFCs (B) HCFCs (C) HFCs (D) Methyl brown tighty acid frits are canned in which type of steel cans (A) Type L (B) Type M (C) Type MC	(B) Maternally derived X Chromosome is heterochromatized (C) Heterochromatized X Chromosome is reactivated during oogenes (D) Genes responsible for pigmentation are located on X Chromosom If a set of four mice is immunized with high dose of an antigen, is response they will produce (A) Low affinity, heterogenous antibodies mainly IgG (B) Low affinity, heterogenous antibodies mainly IgM (C) High affinity, homoogenous antibodies mainly IgG (D) High affinity, homogenous antibodies mainly IgM Which of the following can activate classical complement cascade (A) A single molecule of IgM bound to RBC (B) IgM molecules circulating in the serum (C) A single molecules of IgG bound to the surface of RBC (D) Two molecules of IgG bound at a distance on the surface of RBC In 2019, the UN climate summit is scheduled to be held in (A) Germany (B) India (C) Brazil (D) Kagali Amendment of the Montreal protocol relates to the regularming by phasing out (A) CFCs (B) HCFCs (C) HFCs (D) Methyl bromide Highly acid frits are canned in which type of steel cans	(B) Maternally derived X Chromosome is heterochromatized (C) Heterochromatized X Chromosome is reactivated during oogenesis (D) Genes responsible for pigmentation are located on X Chromosome If a set of four mice is immunized with high dose of an antigen,in the secon response they will produce (A) Low affinity,heterogenous antibodies mainly IgG (B) Low affinity,heterogenous antibodies mainly IgM (C) High affinity,homoogenous antibodies mainly IgG (D) High affinity,homogenous antibodies mainly IgM Which of the following can activate classical complement cascade (A) A single molecule of IgM bound to RBC (B) IgM molecules circulating in the serum (C) A single molecules of IgG bound to the surface of RBC (D) Two molecules of IgG bound at a distance on the surface of RBC In 2019, the UN climate summit is scheduled to be held in (A) Germany (B) India (C) Brazil (D) Chile Kagali Amendment of the Montreal protocol relates to the regulation of gwarming by phasing out (A) CFCs (B) HCFCs (C) HFCs (D) Methyl bromide Highly acid frits are canned in which type of steel cans (A) Type L (B) Type M (C) Type MC (D) Type MR	

(D) Leuconostoc mesenteroides followed by Lactobacillus pentoaceticus and then Lactobacillus curcumeris **37**. Patients with celiac disease should not eat Wheat **Peanuts** (A) (B) Corn (C) Rice (D) **38.** Which of the following food pathogens can survive at cold temperature Clostridium botulinum (B) Campylobacter jejuni (C) Listeria monocytogenes (D) Bacillus cereus 39. Mark the incorrect statement (A) Corn syrups add viscosity to confection due to its dextrin content Invert sugar retards crystallization of sucrose (B) Sorbitol is less sweet than sucrose and adds no calories (C) (D) Aspartame is sweeter then sucrose and adds no calories 40. Diphtheria toxin which is tagged to monoclonal antibody for targeted cancer therapy acts by ADP-ribosylation of eEF2 (A) (B) Adenylate cyclase cleavage (C) Uncoupling of electron transport chain (D) Blocking of transmission in peripheral nerves Mark the incorrect statement 41. (A) Tandem mass spectroscopy is used to determine peptide sequence Glycosylation or phosphorylation of protein can be identified by MALDI (B) (C) Mass spectroscopy cannot analyze metabolome The time of flight (TOF) for ions is directly correlated with mass to charge (D) ratio 42. Mark the incorrect statement Pyrosequencing involves sequencing by synthesis (A) (B) Next generation sequencing can be used for quantification of gene expression (C) Deep sequencing of bisulfite treated DNA can be used to study global methylation in cancer (D) Exome-sequencing is not suitable to detect mutations associated with tumor progression Most proteins have net positive charge at **43.** High Ph (A) (B) Low pH (C) In the presence of SDS (D) In the presence of mercaptoethanol 44. Which statement regarding yeast replicative plasmid is not true It is a high copy number plasmid (A)

It does not contains 2 µ plasmid origin of replication

It does not show mendelian segregation

(B)

(C)

	(D)	It gives the most stable maintenance of cloned gene
45.	Wha	t is best option to express heterologous proteins efficiently in <i>E.coli</i> when codon
		can be a limitation
	(A)	Using genetically modified host strain that expresses rare tRNAs
	(B)	Genetically engineer the foreign gene to incorporate codons for more abundant tRNAs
	(C)	Genetically engineer the gene to remove the codons for rare tRNAs
	(C) (D)	Grow the genetically modified host cells for longer time to make protein with rare
	(D)	codons
46.	Whic	ch of the following techniques is based on Forster Resonance Energy transfer
	(FRE	
	(A)	Multiplex PCR
	(B)	Taq man PCR
	(C)	Surface Plasmon Resonance
	(D)	Fourier transform infrared spectroscopy
47.	Whic	ch statement is not true for CRISPR Technology
	(A)	It is a kind of adaptive immunity in bacteria
	(B)	It works exclusively in bacteria
	(C)	It is based on RNA guided sequence specific DNA cleavage
	(D)	It is a powerful tool for making knock outs
48.	In re	everse phase HPLC sample is purified by usingstationary phase andmobile phase
	(A)	-
	(C)	Hydrophobic, non polar (D) Hydrophobic, polar
49.	All tl	he statements given below are correct except
	(A)	Sec pathway transports proteins from the cytoplasm to outside cell in two
		steps
	(B)	Transportation of inner membrane proteins require sequences specific for
		signal recognition particle (SRP)
	(C)	Only unfolded protein containing two arginines in their signal peptide go
		through TAT pathway
	(D)	TAT pathway is important for virulence in pathogens
50.	Yeas	t two hybrid system cannot be used to study
	(A)	Protein - Protein interaction (B) Protein - RNA interaction

Loss of DNA- protein interaction

Loss of Protein - Protein interaction (D)

(C)

Forensic Science(Ph.D.)

1.	In fore (A)	ensic science th Blood	e most i	reliable form of Weapon	f eviden (C)	ce is Clothes	(D)	Eye witness		
2	, ,		` /	_	, ,		, ,	•		
2.	(A)	n of the following R. A. Riess	ng manv	iduais is know	n as the (B)	Edmond Loc		oxicology ?		
	(C)	Calvin Godda	ırd		(D)	Mathieu Orfi				
3.	` ′			a annlication of	` /			tion?		
3.	(A)	was first to advo Hans Gross	ocate in	e application of	(B)	Alphonse Be	_	don?		
	(C)	Paul Kirk			(D)	August Volli				
4.	In India the first State Forensic Science laboratory was established at									
7.	(A)	Calcutta, 1952		oic science lauc	(B)	•				
	(C)	Delhi, 1952	_		(D)	Hyderbabad,				
5.			ng is the	nreferred way	` /			9		
J.	Which of the following is the preferred way to identify a deceased person? (A) Visual inspection									
	(B)	•								
	(C)	Examination	of teeth,	surgical record	ds					
	(D)	Surgical scars	3							
6.	The state forensic science laboratory was established in Shimla in year									
	(A)	1986	(B)	1987	(C)	1988	(D)	1989		
7.	The term 'self-loading pistol' is strictly synonymous with which one of the following?									
	(A)	Semi-automat	tic pisto	1	(B)	Double-actio	n revolv	er		
	(C)	Single-action	revolve	r	(D)	Automatic pistol				
8.	Which one of the following is used to analyse for the presence of gunshot residues? (A)									
		Microspectro	photome	etry						
	(B)	Refractive inc	lex mea	surements						
	(C)	Polarized ligh		- ·						
	(D)	Scanning election analysis	etron mi	croscopy used	in con	junction with	energy (dispersive X-ray		
9.	Which	n of the follow	ing is	characteristic o	of genu	ine signatures	s (as op	posed to forged		
	_	ures)?								
	(A)	Pen strokes w			(B)	Pen strokes v	-	ring ends		
	(C)	Evidence of re	etouchir	ng	(D)	Unnatural pe	n lifts			
10.		probability of b	_	• 1		•	of blood	I type O is		
		s the probabilit	•	· ·	• •					
	(A)	5/8	(B)	1/8	(C)	1/2	(D)	1/16		

11.	-	hase in the grov own as the:	wth cyc	cle of an indi	vidual hai	ir in which th	e hair is	actively gro	wing	
	(A)	Anaphase			(B)	Catagen pha	ase			
	(C)	Telogen phase	e		(D)	Anagen pha	ise			
12.	The fi	nal breakthroug	gh for tl	he fingerprint	method of	of personal id	entificati	on was mad	e by:	
	(A)	Sir Francis Ga		0 1	(B)	Joseph Fau			·	
	(C)	William Herse	chel		(D)	Edward He	nry			
13.	For n	nost fingerprint	exami	ners, the ch	emical m	ethod of cho	ice for v	isualizing 1	latent	
	prints									
	(A)	Silver nitrate			(B)	Iodine				
	(C)	Chlorate			(D)	Ninhydrin				
14.		nree basic types	_		n are:					
	(A)	Aarches, loop		· ·	(B)	Loops, arch				
	(C)	Whorls, arche	es and a	ccidentals	(D)	Whorls, acc	cidentals :	and loops		
15.	Quad	Quadrant zone method of crime scene investigation is suitable for:								
	(A)	Indoor crime	scene		(B)	Outdoor cri	me scene	;		
	(C)	Automobile c	rime sc	ene	(D)	Blast site				
16.	Blood	l or buccal swab	s for D	NA analysis	are to be	taken from ar	ny conser	ısual partneı	ſ	
	havin	g sex with the v	ictim w	vithin	hours foll	owing interco	ourse.			
	(A)	24 hours	(B)	36 hours	(C)	48 hours	(D)	72 hours		
17.	The a	cid phosphatase	screen	ing test is use	ed to dete	ct which phys	siological	fluid?		
	(A)	Sweat	(B)	Semen	(C)	Blood	(D)	Saliva		
18.	Which	h of the following	ng best	defines rigor	mortis?					
	(A)	This is the boo	dy cool	ing after deat	th (B)	Livor morti	S			
	(C)	Postmortem r	igidity		(D)	Postmorten	n medical	examinatio	n	
19.	Which	h of the follo	wing	physiological	fluids	would be ex	spected	to have a	high	
		ntration of the e	•	-						
	(A)	Urine	(B)	Sweat	(C)	Semen	(D)	Saliva		
20.	Which	h of the following	_		ive test fo	or blood?				
	(A)	Acid phospha		st	(B)	Luminol tes				
	(C)	Kastle-Meyer	test		(D)	Leuco-mala	chite gre	en test		
21.		nol reagent reac ss known as:	ts with	blood in the	presence	of peroxide to	o emit lig	tht by a cher	mical	
	(A)	Fluorescence			(B)	Chemilumi	nescence			
	(C)	Coagulation			(D)	Illumination	1			
22.	The c	ondition charac	terised	by the abser	ice of spe	rm cells in th	ne semina	al fluid is k	nown	
	as:									

	(A) (C)	Hypospermia Oligospermia			(B) (D)	Hyperspermia Azoospermia				
23.	prelin (A)	ninary color tes p30			a substance is blood is best made by means e-Meyer color test, which uses the chemical: (B) Benzidine					
	(C)	Precipitin			(D)	Phenolphthal	eın			
24.	-	ora-basal index			(C)	Daga	(D)	Stature		
25	(A)	Age	(B)	Sex	(C)	Race	(D)			
25.	-	rties of evidence of certainty is		can be attribute	a to a c	ommon source	with ar	n extremely high		
	(A)	Individual characteristics				Referent characteristics				
	(C)	Comparison			(B) (D)	Class characteristics				
26.	How much seminal fluid does the normal male release during an ejaculation?									
	(A)	2.5 ounces			(B)	6 pints				
	(C)	1 milliliter			(D)	2.5 to 6 milli	liters			
27.	Cheile	oscopy is the st	udy of							
	(A)	Lips	(B)	Eyes	(C)	Ears	(D)	Nose		
28.	In the	ABO system,	blood g	roup 'O' is char	acterise	d by the:				
	(A)		_	A and the absen		ntigen B				
	(B)			gen A and antig	gen B					
	(C) (D)	Presence of a	_		ren R					
29.	(D) Absence of both antigen A and antigen B The ideal place to record the temperature of dead body is									
49.	(A)	Rectum	(B)	Axilla	(C)	Mouth	(D)	Groin		
30.	, ,		` /	seen in death d	` /	Modeli	(D)	Grom		
30.	(A)	Strangulation		scen in death d	(B)	Drowning				
	(C)	Electrocution			(D)	Asphyxia				
31.	Specia	mens for toxico	ological	evaluation sho	uld be p	preserved in				
	(A)	10 % Formal	•		(B)	Alcohol				
	(C)	Normal Salin	ne		(D)	Saturated solu	tion of	common salt		
32.	All of	f the following	g are ite	ms to be colle	cted fro	om a deceased	's body	and sent to the		
	forens	sic laboratory e	xcept:							
	(A)	Head and pub	oic hairs	3	(B)	Ocular fluid				
	(C)	Blood			(D)	Fingernail sci	rapings			
33.				•			the pro	bability of two		
		_		fingerprints is			60 4			
	(A)	1 x 10 to the	<i>3</i> 0th po	wer	(B)	1 x 10 to the	outh po	wer		

	(C)	1 x 10 to the	100th p	ower	(D)	1 x 10 to the	90th po	wer	
34.	The c (A)	common habit fo Nicotine	orming (B)	drug is Alcohol	(C)	Opium	(D)	Heroin	
35.		ng is common i	n:		` /	1	` '		
	(A)	Psychedelic a			(B)	Solvent abuse	e		
	(C)	Ether abuse			(D)	Smack depen			
36.	Horiz	zontal ligature m	nark in 1	the neck is seen	in				
	(A)	Throttling			(B)	Hanging			
	(C)	Choking			(D)	Strangulation	by liga	ature	
37.	Adipo	ocere is formed	due to:						
	(A)	Putrefaction of	of soft t	issues					
	(B)	Dehydration of	of musc	cles and subcuta	neous f	fat			
	(C)	Hydrogenatio	on of su	bcutaneous tiss	ues				
	(D)	Saponification	n of sub	ocutaneous fat					
38.	The c	hild would have	e	number of teet	th at the	e age of 3:			
	(A)	20	(B)	16	(C)	24	(D)	12	
39.	The f	following bones	are use	ful in determina	ation of	stature:			
	(A)	Fibula and Pi	siform		(B)	Radius and T	alus		
	(C)	Femur and U	lna		(D)	Humerus and	Hyoid		
40.	The to	echnique comm	only us	sed for comparis	son of in	nk sample is:			
	(A)	Gas chromato	ography	•	(B)	Thin layer ch	romato	graphy	
	(C)	X-ray diffract	tion		(D)	Infra red spec	etroscop	ру	
41.	The report of fake currency note is admissible as evidence in court under:								
	(A)	IPC292	(B)	IEA-292	(C)	CrPC-292	(D)	CPC-292	
42.	A file	placed on a co	mputer'	's hard disk driv	e by W	ebsites the use	r has vi	sited are called:	
	(A)	=	_	Bookmarks	-	Caches	(D)	Cookies	
43.	Whic	h of the followi	ng toxi	ns comes from	the cast	or oil plant?			
	(A)	Strychnine	(B)	Ricin	(C)	Atropine	(D)	Digitalin	
44.	Who	propounded the	· 'princi	nle of exchange	e'?	-		_	
	(A)	Francis Galto	-	pro or orrenang.	(B)	Edmond Loca	ard		
	(C)	Hans Gross			(D)	Alphonse Ber			
45.	` ′		ciis can	be A C or T	` ′	-		e expected to be	
т.,	-	l in the populati		<i>be</i> 11, <i>c</i> or 1.	110 W II	nany genotype.	s can o	e expected to be	
	(A)	3	(B)	6	(C)	12	(D)	9	
46.			` /		` ′		` /	how many PCR	
70.		icts from a sing		•	-	roduce approx	1111atC1 y	now many I CN	
	Produ	II om a omg	p	21 11 111010	- 0.10 .				

			cyte antigen lown as 1, 2,									
		illeles?	7 w 11 d3 1, 2,	o, and -	r. 110 W	many an	irerent ger	lotypes	are p	0331010	, 101 ti	iiese
	(A)	8	(B)	10		(C)	12	(D)	16		
49.	Using	g the equ	ation given b	elow,								
					$W \approx$	$\frac{d^3}{16}$						
	by a	bomb c	approximate ontaining 21 d is the diar (B)	0 kg c	f explo	sive. wh	ere W is	the wei	ght c	of the	charge wer?	
50.		main te	echnique use :	d to a	ınalyse	samples	suspecte	d of co	ontair	ning 1	iquid	fire
	(A)	Atomi	c absorption	spectro	scopy	(B)	Gas chr	omatogr	aphy			
	(C)	X-ray	diffraction			(D)	Ultravio	olet-visib	ole sp	ectros	copy	
					<i>x-x</i>	c-x						

128,000

Approximately 1 billion

(B)

(D)

A genetic locus that is analyzed in many forensic and paternity testing laboratories is the

The frequency of occurrence in the general population is very small It is shorter by six bases on the Y chromosome then the X chromosome

(A)

(C)

(A)

(B) (C)

(D)

47.

48.

64

Approximately 1 million

The Y-STR's utility in the forensic sciences is that:

Replication of the DNA takes less then one hour

It originates only from a male donor of DNA

Microbial Biotechnology(Ph.D.)

			<i>O</i> .					
1.	A bacterium weighs one femtogram and has a doubling time of 20 min. If this organism grows continuously for 24 hrs, with same doubling time, its biomass will be A) 1.00 kg B) 100.00kg C) 1000.00 Tons D) More than the weight of the earth							
2.	Use of A)	Fagar as a solidifying agent for nutries F. E.Hesse B) R. Koch	nt medi C)	a was given by L. Pasteur	D)	J. Lister		
3.	In <i>S.aureus</i> cell wall, penta-glycine joins two adjacent tetra peptides. This joining is between A) D-Ala of one peptide and D-Lys of second peptide B) D-Ala of one peptide and L-Lys of second peptide C) L-Ala of one peptide and L-Lys of second peptide D-Ala of one peptide and meso-DAP of second peptide							
4.	One of A) B) C) D)	of the components involved in flagellar movement is called Rotor. It is made up of MS and C rings MS and L rings MS and P rings P,L and C rings						
5.	Most r	nicrobes die if the internal pH drops/i	rises					
	A)	Below 5.0-5.5	B)	6.0-6.20				
	C)	Above 7.58.0	D)	Above 7.6 -8.	.3			
6.	Appro A) B) C) D)	B) 30 minutes at 80°C minutes C) 10 minutes at 70°C						
7.	Using A) C)	glyoxylate cycle, bacteria converts ac Oxaloacetate Malate	cetylCo B) D)	A into an end p Succinate Pyruvate	roduct l	known as		
8.	Pasteu A) B) C) D)	Pathogenic microbes in milk Undesirable microbes in milk All vegetative forms of microbes in Undesirable microbes in a given san	_	sample				

9.	 The starting material for biosynthesis of Penicillin by <i>Penicilliumchrysogenum</i> is A) D-alpha-Aminoadipic acid, L-Cysteine, L-Valine B) D-alpha-Aminoadipic acid, L-Cysteine, D-Valine 							
	C)	L-alpha-Aminoadipic acid, D-Cystei						
	D)	L-alpha-Aminoadipic acid, L-Cystei	ne, L-V	'aline				
10.	10. Which of the product is synthesized with the simultaneous involvement of two microbial strains (Plus and Minus)							
	A)	Monosodium glutamate	B)	Glutamic acid				
	C)	Beta-Carotene	D)	Vitamin B ₁₂				
11.	11. Coagulation of milk is an important step in the production of Cheese. Coagulum is formed by the degradation of which type of casein.							
	A)	Kappa	B)	Beta				
	C)	Alpha	D)	Epsilon				
12.		f the important SCPs is <i>Spirulina max</i> n as nutrient is	ima. Fo	or its biomass production, the source of				
	A)	CO_2	B)	Whey				
	C)	Molasses	D)	Rice straw				
13.	Which	of the following molecule does not h	ave enz	ymatic activity				
	A)	Streptokinase B) Urokinase						
	C)	Tissue plasminogen activator	D)	Nonase				
14.	For the	· · · · ·	TP as t	he staring material, the sequence of				
	A)	Cyclohydrolase, Reductase, Deamin	ase, and	l Synthase				
	B)	Cyclohydrolase, Deaminase, Reduct	ase and	Synthase				
	C)	Oxidase, Deaminase, Reductase and	Syntha	se				
	D)	Oxygenase, Deaminase, Reductase a	ınd Syn	thase				
15.	. What	type of bonds in Starch are cleaved by	Gluco	amylase (EC 3.2.1.3)				
	A)	Alpha 1,4 and alpha 1,6	B)	Beta 1,4 and beta 1,6				
	C)	Alpha 1,4 and beta 1,6	D)	Beta 1,4 and alpha 1,6				
16.	Vanill	in can be synthesized from Capsaicin	using f	ollowing enzymes				
10.	A)	Pen G Acylase and Vanillyl alcohol	_	•				
	B)	Pen G Acylase and Vanillyl alcohol						
	C)	Capinase and Vanillyl alcohol oxida						
	D)	Capinase and Vanillyl alcohol reduc						
17	Tiok 4	ne most appropriate statement						
1/,	A)		m maj	ority of precursors from Primary				

	B)	Secondary Metabolites arise from Metabolites	limited	number of precursors from Primary			
	C)	Secondary Metabolites arise from on	ly 2-Ca	arbon Primary Metabolites			
	D)	Secondary Metabolites arise from on	ly 6-Ca	arbon Primary Metabolites			
18.	_		ynthesi	zed from Tryptophan using following			
	enzym						
	A)	Glycinase and Xylene oxidase					
	B)	Tryptophanase and Phenol oxidase					
	C) D)	Glycinase and Indi oxidase Tryptophanase and Xylene oxidase					
	D)	Tryptophanase and Ayrene oxidase					
19.	Which	of the following bacteria is the most	crucial	for sustenance of life on Earth			
	A)	Nitrogen fixing bacteria	B)	Carbon fixing bacteria,			
	C)	Phosphorus fixing bacteria	D)	ATP generating bacteria			
20.	Which	of the following organism has fastest	speed	of movement.			
	A)	Mycobacterium tuberculosis	B)	Escherichia coli			
	C)	Man	D)	Leopard			
21	CI.						
<i>2</i> 1.		Dalgarno sequence is		h as guaras in an DNI A			
	A)	Found in 23S rRNA, that binds to pu		•			
	B) C)	Found in 16S rRNA, that binds to py Found in 5SrRNA, that binds to pyri					
	D)	Found in 381KNA, that binds to pyri		<u>=</u>			
	D)	Tould in 200 iXiVX, that olids to pu	iiiic iic	in sequence in inicivity			
22.	Type I	I Restriction endonucleases are enzyn	nes that				
	A)	•		NA within or near recognized DNA			
	,	sequence and require Mg ²⁺ as a cofac	ctor	8			
	B)	Restrict/destroy the endonucleases pr		n cytoplasm			
	C)	•		DNA molecule to produce blunt ends;			
	•	means to allow ligation of two DNA					
	D)	Degrade ssRNA genome of retroviru	ses				
23.		Obp DNA can code for amino					
	A)	300 B) 333	C)	500 D) 433			
24	3.4	1.6. '. C 1. 1	. 1 1	CDNIA			
24.		ommon modification found in nucleo					
	A)	O-glycosylation	B)	Methylation			
	C)	Sulfation	D)	Nitrosylation			
25	RNA i	s chemicallyreactive as c	omnare	ed to DNA due to			
	A)	More, presence of extra hydroxyl gro		00 to D1111 due to			
	B)	Less, presence of extra hydrogen atom					
	C)	More, presence of extra nitrosyl	-				
	D)	Less, presence of benzene ring					
	/	, 1					

26.	β ₂ micr A)	oglobulin is as MHC I	ssociated B)	d with MHC II	C)	TCR	D)	IgG
27.	Clostri A) C)	dium difficileis Antibiotic-ass Endocarditis			B) D)	Tetanus Catheterinfe	ections	
28.	the bin		of the fo		otors wi	MHC-I on the ll be inhibited?	?	of infected cells,
	A)	CD 4	B)	CD8	C)	CD 10	D)	CD 32
29.	Which	of the following	ng disea	ses is an intox	cication	and not infecti	ion?	
	A)	Staphylococc	al food p	ooisoning	B)	Tetanus		
30.	isotypi		assortm	ent of its ligh	nt chain	. How many		gion genes and 2 idiotypes can be
	A)	2000	B)	500	C)	8	D)	1000
31.	Bacilla A) C)	ry dysentery is Clostridium s Entamoeba hi	pp.	·	y B) D)	Salmonella s Shigella spp		
32.	Phagod A) C)	cytosis involve Cytoskeletal 1 Oxidative kill	rearrange		B) D)	Binding of T Recognition		
33.	Which		owing c	cells does no	ot exhi	bit antibody-o	depende	nt cell-mediated
	A)	B cells	B)	NK cells	C)	Macrophage	s D)	Neutrophils
34.	Admin A) C)	istration of ant Natural, passi Artificial, pas	ve	s serum is an	example B) D)	e of Natural, acti Artificial, ac	ve	iity
35.	Rheum	atic fever is ar	n autoim	mune disease	associa	ted with		antigens
	A)	Staphylococc			B)	Mycobacteri		-
	C)	Fungal cell w	all		D)	Streptococca	al cell wa	all
36.						racellular para		
	A)	Mycobacteriu		2	B)	Mycobacteri		
	C)	Shigellaflexne	eri		D)	Clostridium	verjringe	ens
37.	The on A)	ly carbohydrat Glyceraldehy		is not having	any chi B)	iral carbon ato Erythose	m is	

	C)	Dihydroxyacetone	D)	Erythrulose
20	Uiston	es are rich in		
30.	A)	Lysine	B)	Alanine
	C)	Histidine	D)	Lysine and Arginine
	C)	Histianic	D)	Lysine and Arginine
39.	Which solution		most aj	oppropriate for sterilizing an antibiotics
	A)	Dry heat sterilization	B)	Microfiltration
	C)	Autoclaving	D)	Desiccation
	-,	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	_ /	
40.	The re	served food materials of green algae i	S	
	A)	Laminaria	B)	Chrysolaminaria
	C)	Floridian starch	D)	Starch
41.		nagnitude of BOD of wastewater is rel		
	A)	Bacterial count	B)	Amount of organic materials
	C)	Amount of inorganic materials	D)	Fungal count
42.		were the investigators live at the same		
	A)	Koch and Pasteur	B)	Darwin and Woese
	C)	Van Leeuwenhoek and Ricketts	D)	Berg and Hooke
43.		cells are good source of		
	A)	Vitamins A and B	B)	Vitamins A and D
4.4	C)	Vitamins B and D	D)	Vitamins A and C
44.		pating and drifting microbes are called		D. d.
	A)	Zooplanktons	B)	Benthos
4 =	C)	Planktons	D)	Limnos
45.		ajor carrier of Salmonellosis are	D)	N. (1.0° 1
	A)	Meat and eggs	B)	Meat and fish
16	C)	Eggs and fruits	D)	Eggs and fruits
40.		ch year "The Biological Diversity Ac 2004 B) 2002		
47	A)	,	C)	2005 D) 2016
4/.		of the following is not a type of copy		
	A) C)	Engine Design Literary	D)	Musical Work Art
18	/	rm for patent protection under Indian	/	
70.	A) 15	<u> </u>	C)	20 Years D) 35 Years
	11) 13	Tears D) 00 Tears	C)	20 Tears D) 33 Tears
49.	. What i	prominent amendment was made in T	he Pate	nt Act. in 2005
	A)	Parallel importation		
	B)	Establishment of appellate board		
		Simplification of procedures		
	D)	Product patent for inventions in all fa	ields of	technology
	,	r		
50.	Which	of the following category does not fa	ll unde	r industrial property rights
	A)	Patents	B)	Trademarks
	C)	Trade secrets	D)	Copyrights

Microbiology

1.	Histoz	coic are the organisms residing in		
	A)	Colon	C)	Tissues
	B)	Blood	D)	Small Intestine
2.	India v	was declared polio free country in		
	A)	2013	C)	2011
	B)	2015	D)	2014
3.	Micro	parasites are		
	A)	Algae	C)	Protozoa
	B)	Fungi	D)	Insects
4.	Protoz	toa belong to kingdom		
	A)	Animalia	C)	Monera
	B)	Protista	D)	Plantae
5.	The pa	arasite eradicated from India is		
	A)	Medinaworm	C)	Threadworm
	B)	Hookworm	D)	Pinworm
6.	GRAS	stands for		
	A)	Generally regarded as safe	C)	Generally registered as safe
	B)	Generally required safe	D)	Generally recognized as safe
7.	Probio	otics are generally		
	A)	Yeast	C)	Enterobacter
	B)	Streptococci	D)	Lactic acid bacteria
8.	HSC r	epresents		
	A)	Human stem cells	C)	Haem stem cells
	B)	Haemopoietic stem cells	D)	Human secretory cells
9.	Class	I MHC molecules are expressed in		
	A)	Antigen presenting cells	C)	B cells
	B)	Nucleated cells	D)	T cells
10	. Respir	ratory bursts is a		
	A)	Biochemical mechanism	C)	Physiological mechanism
	B)	Microbicidal mechanism	D)	Pathogenic mechanism

11. Emi	l Von Behring got nobel prize for h	is research	work in
A)	Anaphylaxis	C)	Antitoxins
B)	Toxins	D)	Antibodies
12. Mul	tiple Sclerosis occurs due to		
A)	Hypersensitivity	C)	Autoimmune disorder
B)	Sedentary life	D)	Malnutrition
13. Urea	ase is the potent enzyme produced b	ру	
A)	Campylobacter	C)	Helicobacter
B)	Escherichia	D)	Enterobacter
14. Late	e lactose fermenters are deficient in	enzyme	
A)	β galactosidase	C)	β galactopermease
B)	β galactosidase permease	D)	β galactoglucopermease
15. Tox	oid is a		
A)	Polysaccharide	C)	Proteinaceous compound
B)	Glycoprotein	D)	Glycolipid
16. ISC	OM is a		
A)	Protein antigen + Quil A	C)	Protein antigen + detergent
B)	Protein antigen + Quil A + deter	rgent D)	Protein antigen + detergent + MF 59
17. Cide	er Vinegar is produced from		
A)	Molasses	C)	Apple juice
B)	Wheat	D)	Barley
18. Enz	yme saccharase acts on		
A)	Saccharin	C)	Sucrose
B)	Maltose	D)	Fructose
19. Kefi	ir is produced by		
A)	Lactic acid bacteria (LAB)	C)	LAB + yeast
B)	Yeast	D)	Bifidobacteria
20. Curi	ing is the process of preservation of	meat by	
A)	Refrigeration	C)	Salts
B)	Lyophilization	D)	Salts + refrigeration
21. Euk	aryotic mRNAs are		
A)	Polycistronic	C)	Monocistronic
B)	Tricistronic	D)	Bicistronic

22. In homofermentative process, the end product is always							
A)	Lactic acid + ethanol	C)	Lactic acid alone				
B)	Lactic acid + water + carbon dioxide	D)	Lactic acid + traces of other products				
23. Genetic material in viruses may be							
A)	RNA	C)	RNA and DNA				
B)	DNA	D)	RNA or DNA				
24. Ribosome 55s is found in							
A)	Eukaryotes						
B)	Prokaryotes						
C)	Mitochondria of vertebrates						
D)	Mitochondria in golgi bodies of euka	Mitochondria in golgi bodies of eukaryotes					
25. mRNA of prokaryotes are							
A)	Stable and long shelf life	C)	Unstable and polycistronic				
B)	Stable and polycistronic	D)	Stable and short shelf life				
26. RNA polymerase I is located in							
A)	Nucleoplasm	C)	Nucleolus				
B)	Cytoplasm	D)	Nuclear membrane				
27. Autoclave and porcelain filters were discovered by							
A)	Robert Koch	C)	T Needham				
B)	Charles Chamberlain	D)	Elie Metchnikoff				
28. Importance of microorganisms in carbon and nitrogen cycle was discussed by							
A)	Louis Pasteur	C)	Beijerinck				
B)	Lister	D)	S N Winogradsky				
29. In bioterrorism, the most lethal organism is							
A)	Yersinia	C)	Bacillus				
B)	Vibrio	D)	Varicella				
30. World Health Day is celebrated every year in the month of							
A)	7 th January	C)	7 th March				
B)	7 th June	D)	7 th April				
31. 16s rRNA has classified microbes into three domain and is given by							
A)	Carl Woese	C)	Holben				
B)	Olsen	D)	Car Louis				

32. Second edition of Bergey's Manual of systematic bacteriology has						
	A)	Four volumes	C)	Three volumes		
	B)	Five volumes	D)	Six volumes		
33. Genetic material in TMV is						
	A)	ssDNA	C)	dsRNA		
	B)	dsDNA	D)	ssRNA		
34. Intermediate host for filaria is						
	A)	Rat	C)	Human		
	B)	Culex	D)	Anopheles		
35. Fastest moving parasite is						
	A)	Giardia	C)	Trichomonas		
	B)	Paramaecium	D)	Trypanosome		
36. Malaria is caused by						
	A)	Tachyzoites	C)	Sporozoites		
	B)	Gametocytes	D)	Merozoites		
37	. Saproz	zoic microorganism takes				
	A)	Solid foods	C)	Semi solid foods		
	B)	Soluble foods	D)	Solid and liquid foods		
38. Amoebic cyst are formed in						
	A)	Tissues	C)	Soil		
	B)	Colon	D)	Ileum		
39. The antibodies that crosses placental barriers is						
	A)	IgM	C)	IgA		
	B)	IgG	D)	IgD		
40. IgM is most effective antibody in neutralizing viruses because of its						
	A)	High valency	C)	Half life		
	B)	High amount	D)	Avidity		
41. CDC stands for						
	A) Centre for Disease Control & prevention					
	B)	Centre for Disease Control & protection				
	C)	Centre for Disease control & Progress				
	D)	D) Centre for Disease control & Program				
42. Smallpox is eradicated even then virus is preserved in						

A)	Baltimore, USA	C)	Rockfellar Institute, USA
B)	Atlanta, USA	D)	Texas University, USA
43. Perit	trichous flagella is present in		
A)	E. coli	C)	Pseudomonas
B)	Vibrio cholera	D)	Clostridium
44. Dien	nes phenomena is exhibited by		
A)	Klebsiella	C)	Proteus
B)	Escherichia	D)	Serratia
45. Am	ong different species of Klebsiella, v	which spe	ecies is indole producing
A)	K. pneumonae	C)	K. oxytoca
B)	K. aerogenes	D)	K. ozaenae
46. Caps	sule of Klebsiella can be seen with		
A)	Simple staining	C)	Zeil Neilson staining
B)	Gram staining	D)	Negative staining
47. Red/	pink colonies are seen due to product	tion of p	igment by
A)	E. coli	C)	Salmonella
B)	Shigella	D)	Serratia
48. Pure	culture concept was introduced by		
A)	Lister	C)	Louis Pasteur
B)	Robert Koch	D)	John Tyndall
49. Blac	k centered colonies are observed on I	OCA by	
A)	Shigella	C)	Salmonella
B)	Proteus	D)	Serratia
50. Miss	sion Indradhanush was launched on		
A)	25 th December 2014	C)	25 th December 2013
B)	25 th December 2016	D)	25 th December 2012