M. Phil./Ph. D. Entrance Test - 2015 Subject: Statistics

Paper - I

		mit Card/Roll No. slip before filling your Ro oklet and Answer Sheet.
Roll No.	In Figure	In Words
O.M.R. Ans	wer Sheet Serial No.	
Signature of Cal	ndidate:	Signature of Invigilator:
Time: 60 Min DO NOT		uestions: 50 Maximum Marks: 50 THE BOOKLET UNTIL ASKED TO DO SO.

INSTRUCTIONS:

- Write your Roll No. on the Questions Booklet and also on the OMR Answer Sheet in the space provided and nowhere else.
- Enter the Question Booklet Serial No. on the OMR Answer Sheet. Darken the corresponding bubbles with Black Ball Point/Black Gel Pen.
- Do not make any identification mark on the Answer Sheet or Question Booklet.
- Please check that this Question Booklet contains 60 Questions. In case of any discrepancy, inform the Assistant Superintendent within 10 minutes of the start of Test.
- Each question has four alternative answer (A,B,C,D) of which only one is correct. For each question, darken only one bubble (A or B or C or D), whichever you think is the correct answer, on the Answer Sheet with Black Ball Point/Black Gel Pen. There shall be no negative marking for wrong answers.
- If you do not want to answer a question, leave all the bubbles corresponding to that question blank in the Answer Booklet. No marks will be deducted in such cases.
- Darken the bubbles in the OMR Answer Sheet according to the Serial No. of the question given in the Question Booklet.
- 8. If you want to change an already marked answer, crase the shade in the darkened bubble completely.
- 9. For rough work only the blank sheet at the end of the Question Booklet be used.
- 10. The Answer Sheet is designed for computer evaluation. Therefore, if you do not follow the instructions given on the Answer Sheet, it may make evaluation by the computer difficult. Any resultant loss to the candidate on the above account, i.e. not following the instructions completely, shall be of the candidate only.
- 11 After the test, hand over the Question Booklet and the Answer Sheet to the Assistant Superintendent on duty
- 12. In no case the Answer Sheet, the Question Booklet, or its part or any material copied/noted from this Booklet is to be taken out of the examination hall. Any candidate found doing so would be expelled from the examination.
- 11. A candidate who creates disturbance of any kind or changes his/her seat or is found in possession of any paper possibly of any assistant or found giving or receiving assistant or found using any other unfair means during the examination will be expelled from the examination by the Centre Superintendent/Observer whose decision shall be final.
- 14. Communication equipment such as mobile phones, pager, wireless set, scanner, camera or any electronic/digital gadget etc., is not permitted inside the examination hall. Use of calculators is not allowed.
- The candidates will not be allowed to leave the Examination Hall/Room before the expiry of the allotted time.

Let there be p levels of factor A and q	levels of factor B in a two way ANOVA with r
observations per cell. Answer questions I	and 2 using this information.

17	The degrees of freedom a	ssociated with error ar	re:	
	A) (p-1)(q-1)	B) mpq-1	C) (m-1)(p-1)(q-1)	D) pg(m-1)
2.	The degrees of freedom a	ssociated with interact	tion AB are:	
	A) mpq-1	B) (p-1)(q-1)	C) pq(m-1)	D) (m-1)(p-1)(q-1)
3.	A 2" factorial experiment	is carried out in r repl	ications. The error deg	grees of freedom are:
	A) (r-1)(n-1)	B) (r-1)2 ⁿ	C) (r-1)(2 ⁿ -1)	D) r(2 ⁿ -1)
4,	Let SE2 be the mean squ order m. The standard erro			
	A) (m-1)S _F	B) S _E /(m) ^{1/2}	C) S _E (2/m)	D) $[(2/m)S_E^2]^{1/2}$
X(0) =	ard exponential distribution of the random variable tential distribution. Use this $X_{(ij)}$ can be written as	s Y ₁ ,, Y _n are in	dependent with com-	mon standard
	A) $X_{(i)} = \sum_{i=1}^{r} (X_{(i)} - X_{(i-1)})$		B) $X_{(n)} = \sum_{i=1}^{r} Y_i / (n-i)$	-1)
	C) $X_{(r)} = Y_{(r)}/(n-r-1)$		D) Both A and B	-
6.	The value of $E(X_{(r)})$ is:			
,	A. 1/(n-r-1)	B) $\sum_{i=1}^{r} 1/(n-i-1)$	C) $\sum_{i=1}^{r} (n-i-1)$	D) (n-r-1)
7,	The value of $Var(X_{(r)})$ is:		1000	
	A. $\sum_{i=1}^{n} 1/(n-i-1)$	B) $(n-i-1)^2$	C) $\sum_{i=1}^{n} 1/(n-i-1)^i$	D) 1
8.	The value of $E(X_{(n)} - X_{(1)})$) is:		
= 14	A. $\sum_{i=2}^{r} 1/(n-i-1)$	B) $\sum_{i=1}^{r} 1/(n+i-1)$	C) 0 D)	1/(n-r-1) - 1/(n-2)
	Let $X_{(1)} \le \le X_{(n)}$ be the from a continuous distrib	e order statistics corre	sponding to a random	sample of size n
	A) $n[F(x)]^{r-1}f(x)$	$B)\; n[F(x)]^{n-1}$	C) $n[F(x)] f(x)^{r-3}$	D) F(x)"
10.	Let AX = 0 be the sys matrix, X is nx1 vector solution:	tem of m homogeneous and 0 is mx1 zero	ous linear equations, vector. Let n> m. T	where A is mxn 'hen a nontrivial
	A) Does not exist C) May or may not exist		B) Always existsD) Exists if n≤m.	

11. The matrix

$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}_{is:}$$

		[0 -1 2]	is:	
	A) Positive semi-o C) Positive Definition		B) Negative set D) Negative De	
12.	For the matrix A wit	h A ^t its transpose, the	transformation Y=A	X is orthogonal if:
	A) A=A ^t C) AA ^t = I (identity	matrix)	B) AA ^t = O (z D) AXA ^t = Y	zero matrix)
13.	The inverse of a pos	itive definite matrix is		
	A) Positive definite C) Positive semidefi		B) Negative definite D) Negative semidefinite	
14.		ependent random varia c the trace of matrix		= μ_i , $Var(Y_i) = \sigma^2$, $i = and \mu^1 = (\mu_1,, \mu_k)$.
	Λ) σ ² Α	B) σ ² tr(A)	C) µ ^t Aµ	D) $\sigma^2 tr(A) + \mu^t A \mu$
	 , n. Define the Q d = M². With this infor The distribution of the dist	mation answer questio		CYA
	A) Central Chi-squar	re	B) Non Central	Chi square
	C) Central F		D) Non central	t.
16. The degrees of freedom of the distribution of th		of this quadratic form	are;	
	A) n-I	B) n-2	C) tr(M)	D) tr(M) - (n-2)
17.	The non-centrality po	arameter of the distribu	ution of (Y¹MY)/σ² is	
	A) μ ^t Μμ	$B)~(\mu^t M \mu)/\sigma^2$	C) 0	D) $tr(M) + (\mu^t M \mu)/\sigma^t$
18.	random sample X_1 , and $f(x_1,x_nI\theta)$ be	be an unbiased estin , X _n of size n. Let I the joint density of I then partial derivative	(0) be the fisher information X ₁ ,, X _n . If variance	rmation of the sample oe of T_n ($X_1,, X_n$)
	A) I (θ) C) I(θ)(T ₀ (X ₁ ,, Σ	(_n) -0)	B) (T _n (X ₁ ,, D) [(T _n (X ₁ ,,	
	-1 -1-1/1-0 (-11/1-1/1-1/1-1/1-1/1-1/1-1/1-1/1-1/1-1	**		

Let $X_1, ... X_5$ be a random sample from a continuous distribution with median θ . Define $Y_1 = 1$ if $X_i > \theta$ and zero otherwise. Let $Y = Y_1 + ... + Y_5$. Answer questions 19, 20 and 21 based on this information:

19.	P(Y = 1) is equal to					
	A) ½	B) 5/32	C) 1/32	D) 1/4		
20.	P(Y≥2) is equal to					
	A) 13/16	B) 5/16	C) 3/16	D) 1/16		
21.	The mean and variance	of Y respectively are:				
	A) 2.5 and ¼	B) 2.5 and 1/2	C) ¼ and 2.5	D) 10/4, 5/4		
22.	Let A be the limit sup	of sequence of events	$\{A_n\}$, If $\sum_{n=1}^{\infty} P(A_n) \le$	1, then the value of		
	P(A) is:					
	A) 1	B) 0	C) <1	D) >1/2		
23.	For the sequence of ra	ndom variables {X _n }, o	define $nS_n = \sum_{i=1}^n X_i$. I	Define the sequence		
	$\{Z_n\}$, where $Z_n = S_n^2/(1+S_n^2)$. The sequence $\{X_n\}$ satisfies the weak law of large numbers if and only if:					
	A) $Z_n \to 0$ as $n \to \infty$		B) $Z_n \rightarrow 1$ as $n \rightarrow$. 36		
	C) $E(Z_n) \rightarrow 0$ as $n \rightarrow 0$	c c	D) $E(Z_n) \rightarrow 1$ as r	1		
24.	For any positive ε , the sequence of estimator $T_n = T_n (X_1,, X_n)$ is consistent for the parameter θ if:					
	A) $E(\Gamma_n) = \theta$		B) $P(T_n = \theta) = 1$			
	C) $P[\Pi_n - \theta l \ge \varepsilon] \rightarrow 1$	as n →∞	D) $P[IT_n - \theta I > \varepsilon]$	→ 0 as n→ ∞		
25.	Let F(x) and f(x) be the edf and pdf, respecti with support R. If this support is truncated to this truncated support is:					
	A) f(x)/F(d)	B) $f(x) / \{1-F(d)\}$	C) f(x) F(d)	D) f(x) {1-F(d)}		
26.	Let $F(x)$ be the cdf of a continuous random variable. Define a new random variable as $Y = F(X)$, where the support of Y is $R_Y = \{0, 1\}$. The cdf of Y , say $G(y)$ with $y \in R_Y$, is equal to:					
	Λ) F ¹ (y)	B) F(y)	C) FG ⁻¹ (x)	D) y		
27.	Let $U_1,, U_n$ be a rate	ndom sample from unit	form distribution ove	r the interval (0, 1).		
	Define the random va	riable $Y_i = U_i / \sum_{i=1}^n U_i$,	i = 1,, n. The ra	ndom variables Y1.		
	,,Yn are:	1-1				
	A) Dependent C) Undefined		B) Independent D) Linearly deper	ndent		

The randomized test is used v		when the distribution of test statistics is:				
	A) Continuous	В) Л	Degenerate	C) Rectangular	D) Discrete.	
29.				multivariate normal whe distribution of the		
	A) Chi square C) Degenerate			B) Univariate NonD) Multivariate no		
 I.et -3, 9, 8, -10, 6, -8, -5, -3, 4 be tidistribution over the interval [-θ, θ], observations, is: 						
	A) 10	B)	-10	C) 9.5	D) 9	
 Let X₁,, X_n be a random sample from a continuous distribution fixed x₀, let p =F(x₀). The degree of the kernel associated with the is an estimator of p is: 						
	A) 1	B)	2	C) n	D) n+1	
32.	U-statistic as an estin	nator is ;				
	A) Unbiased C) Biased			B) Consistent D) Consistent and	unbiased	
33.	The Wilk's à criteria in a multi-sample problem, is based on:					
	A) Likelihood function C) Efficient estimato			B) Sufficient StatiD) SPRT	stics	
34.	Two stage sampling is a compromise between:					
	A) Stratified and Sys	tematic		B) Cluster and pps		
	C) Stratified and clus	ter		 D) Stratified and s 	imple random	
35.	Ratio estimator is preferred when the line of regression of variable of interest (Y) on the auxiliary variable (X) passes through:					
	A) Origin			B) (Mean of X, Mean of Y)		
	B) A point on posit	ive X-axi	S	 D) A point on posi 	itive Y-axis	
36.	The distribution of t regression model is:	he test st	natistic used to	test the significance of	of a multiple linear	
	A) Student's t			B) Chi square		
	C) F			 D) Standard Norm 	al.	
37.	A sample of 4 items simple random samp good and 1 bad items	ling with	ted from a lot replacement.	containing 4 bad and the probability that the	6 good items using e sample contains 3	
	A) .0864	B)	.3456	C) 8/21	D) ,5184	

38.	person selects a sam	ple of 3 tablets from	mal weight and 3 over the bottle using simply wing each type of table	ole random sampling
	A) 24/329	B) 144/329	C) 2/7	D) 3/10
39.	industrial worker is s	moker and suffers fro	is a smoker. The pro m respiratory problem ry problem if he smoke	. The probability that
	A) .12	B) 1/4	C) 1/12	D) 1/4
40.	The value of k for otherwise is a joint d		(x,y) = kx(x,y), 0 < x < x < 0	2, -x <y<x and="" td="" zero<=""></y<x>
	A) 1/4	B) 8	C) 34	D) 1/8
41.			random variable (X,Y <1). Then for (x,y) in I	
	A) 2	B) 6	C) 1/6	D) 1/2
42.	The joint pdf of (X,Y	(i) is $f(x,y) = 2 x > 0$, $y > 0$	0, x+y<1 and zero oth	erwise. P[X+Y>2/3] is:
	A) 1/2	B) ¾	C) 4/9	D) 5/9
43.	The value of constar and zero otherwise is		action f(x,y) = cxy, 0<	x<1, 0 <y<1, 1<="" td="" x+y<=""></y<1,>
	A) 12	В) 24	C) 1/12	D) 4
44.	The number of ortho order v is:	ogonal Latin Square	Designs (LSD) associ	ated with an LSD of
	A) V ²	B) v(v-1)	C) v-1	D) v(v-1)/2
45.	Let $f(x) = x$ and $g(x)$	= 1-e'x, x>0. Then \int_0^∞	f(x)dg(x) is equal to:	
	A) 1	B) 0	C) 1/2	D) 2
46.	For $i = 1, 2, 3$ let the $X^{t}A_{1}X = X^{t}A_{2}X + X^{t}$		A;X follow chi square	distribution such that
į	A) $tr(A_1) = tr(A_2A_3)$		B) tr (A ₁) - M	$in(tr(A_2),tr(A_3))$
	C) $\operatorname{tr}(A_1) = \operatorname{Max}(\operatorname{tr}(A_1))$	12),tr(A3))	D) $tr(A_1) = tr(A_1)$	$\Lambda_2) + tr(\Lambda_3)$
47.	In a two phase simplex	method, the second	phase is used to find th	e solution which is:
	A) Basic feasible C) Optimum basic fea	sible	B) Optimum D) Feasible	

48. Let there exist a hounded optimum so feasible solution exits to the:	olution to a linear programming problem. Then a
A) Primal	B) Dual
C) Dual of dual	D) Both primal and dual
49. If maximum likelihood estimator exis	sts MLE exists then it is a function of:
A) Unbiased estimator	B) Sufficient Statistic
C) Outliers	D) Sample moments
50. The Mahanalobis distance estimates t	he distance between:
A) Population Mean Vectors	B) Whishart matrices
C) Chi squares	D) Hotelling's T2

X-X-X