Ph. D. Entrance Test - 2015

Subject: Electrical Engineering (Instrumentation & Control) Paper – I

Important: Please consult your Admit Card/Roll No. slip before filling your Roll Number on the Test Booklet and Answer Sheet.

Roll No.	In Figure	In Words	
O.M.R. Answ	er Sheet Serial No.		
Signature of Candidate:		Signature o	f Invigilator:
Time: 60 Min DO NOT	utes Number of Que		Maximum Marks: 50 TIL ASKED TO DO SO.
TATOMINATIONAL	ONIC		

INSTRUCTIONS:

- Write your Roll No. on the Questions Booklet and also on the OMR Answer Sheet in the space provided and nowhere else.
- Enter the Question Booklet Serial No. on the OMR Answer Sheet. Darken the corresponding bubbles with Black Ball Point/Black Gel Pen.
- Do not make any identification mark on the Answer Sheet or Question Booklet.
- Please check that this Question Booklet contains 50 Questions. In case of any discrepancy, inform the Assistant Superintendent within 10 minutes of the start of Test.
- Each question has four alternative answer (A,B,C,D) of which only one is correct. For each question, darken only one bubble (A or B or C or D), whichever you think is the correct answer, on the Answer Sheet with Black Ball Point/Black Gel Pen. There shall be no negative marking for wrong answers.
- If you do not want to answer a question, leave all the bubbles corresponding to that question blank in the Answer Booklet. No marks will be deducted in such cases.
- Darken the bubbles in the OMR Answer Sheet according to the Serial No. of the question given in the Question Booklet.
- 8. If you want to change an already marked answer, erase the shade in the darkened bubble completely.
- 9. For rough work only the blank sheet at the end of the Question Booklet be used.
- 10. The Answer Sheet is designed for computer evaluation. Therefore, if you do not follow the instructions given on the Answer Sheet, it may make evaluation by the computer difficult. Any resultant loss to the candidate on the above account, i.e. not following the instructions completely, shall be of the candidate only.
- After the test, hand over the Question Booklet and the Answer Sheet to the Assistant Superintendent on duty.
- 12. In no case the Answer Sheet, the Question Booklet, or its part or any material copied/noted from this Booklet is to be taken out of the examination hall. Any candidate found doing so would be expelled from the examination.
- 13. A candidate who creates disturbance of any kind or changes his/her seat or is found in possession of any paper possibly of any assistant or found giving or receiving assistant or found using any other unfair means during the examination will be expelled from the examination by the Centre Superintendent/Observer whose decision shall be final.
- 14. Communication equipment such as mobile phones, pager, wireless set, scanner, camera or any electronic/digital gadget etc., is not permitted inside the examination hall. Use of calculators is not allowed.
- 15. The candidates will not be allowed to leave the Examination Hall/Room before the expiry of the allotted time.

1.	A meter having a sensitivity of $2k\Omega/V$ is used for the measurement of voltage across circuit having an output resistance of $1k\Omega$ and an open circuit voltage of 8V. What wi be the reading of the meter at its 10v scale?							
	A) 5.72V	B) 6.51V	C) 7.6	2 V	D) 7.91			
2,	A Thermometer is cal The maximum static e	A Thermometer is calibrated from 150°C to 200°C. The accuracy specified is ±0.25%. The maximum static error in measurement is						
	A) ±0.5°C	B) 0.375°C	C) ±0.	125°C	D) ±0.0125°C			
3.	A Wheatstone bridge produce a change in instrument is	requires a change of 6 deflection on 3mm	Ωin the unk of galvanon	nown brancheter. The	ch of the bridge to sensitivity of the	11 22		
	A) 0.5%	B) 2%	C) 2.01	nm/Ω	D) 0.5 mm/Ω			
4.	The total current I = where the limits of error	$I_1 + I_2$ in a circuit is more are given as standard	easured as l _l deviations. It	= 150±1A measured a	and $I_2 = 250\pm2A$, as	,		
	A) (400±3)A	B) (400±2.4)A	C) (400	0±1.5)A	D) (400±1)A			
5.	Decide whether each of these statements is True (T) or False (F). Sensors in a measurement system have: (i) An input of the variable being measured, (ii) An output of a signal in a form suitable for further processing in the measurement system. Which option BEST describes the two statements?							
	A) (i) T (ii) T		B)	(i) T (ii)	F ²			
	C) (i) F (ii) T		D)	(i) F (ii)				
6.	particular measuremen movement of pointer a	types of signals that out it system: (i) Temperateross a scale. the functional element i	ure (ii) Vol	age (iii) B	igger voltage (iv)			
	A) (i) to (ii)		B)	(ii) to (iii)				
	C) (iii) to (iv)			(ii) to (iv)				
7.	between the measured measurement system, a	of these statements is value of the current in a n ammeter, was inserted , (ii) The resistance of	n electrical c I in the circu	rcuit and th	e value before the the larger: (i) The			
	A) (i) T (ii) T		B)	G) T (6) 1				

D)

(ii) T

(ii) F

(i) F

8. Decide whether each of these statements is True (T) or Fa measurement system is one where there is a high chance that t frequent calibration. (ii) Operate to the specified level of p BEST describes the two statements?						that the	system	will: ((i) Require	
	A)	(i) T	(ii) T			B)	G) T	(ii) F		
	C)		(ii) T				700	200		
	C_j	(1) 1	(11)			D)	(1) F	(ii) F		
9.	which the va values	has a l lues giv obtain	ack of reported by	eatability i eated mea ating meas	s one where surements of urements ove two statemen	there coul the same or a number	d be: (i) variable	Rando (ii) Fl	m fluc	tuations in
	A)	(i) T	(ii) T			B)	(i) T	(ii) F		
	C)	(i) F	(ii) T			D)	(i) F	(ii) F		
	30	11.51	V .001			- "	102 =	WEEK E		
10.	200°C a linea	. The e ir relati	m.f. at 0°0	C is 0 mV, assumed b	e is to be use at 100°C it is etween e.m.f	4.277 mV	and at	200°C i	t is 9.2	86 mV. If
	A)	-3.9T		Bi	-7.9T	C)	+3.91		D)	+7.9T
	271020			22.9	71 h 47 h 18	~/.			2/	1.17.437.4
11.					etrical resistant o a strain of		gauge w	rith a ga	uge fa	ctor of 2.0
	A)	0.0001	Ω	B)	0.001 Ω	C)	0.01 9	3	D)	$0.1~\Omega$
12,	A) The B) The C) The	e absol e chang e diame	al shaft end ute angular e in angular eter of the e in diame	r position o ar rotation shaft	of a shaft	hich is a d	lirect me	asure o	f	
13.	the foll Range: Non-lin Hyster	lowing 0 to 10 nearity esis err	informatio 000 kPa error: ±0.1 or: ±0.05%	n in its spo 5% of full of full rai	200	~				face has
	A)	±0.2 k		В)	±0.4 kPa	C)	±2kPa			±4kPa
	23)	U.Z B	1.4	15)	TU-4 KI'a	()	128.13	l.	D)	#4KFa
14.				-	of cross-secti					ted by
	TINNOC BOXON							THE STATE OF THE S		
	A)	100 M	N	B)	40MN	C)	40kN		D)	20kN

15,	A hydraulic cylinder give a workpiece an should enter the cylind	average velocit				
	A) $4 \times 10^{-6} \text{ m}^3/\text{s}$	B)	$2 \times 10^{-1} \mathrm{m}^3/\mathrm{s}$	C) 0.2 m ³ /	s D) $2 \text{ m}^3/\text{s}$	
16.	A flow control valve controller to give 0 atmospheric pressure, force of 400 N has to	to 100% correc The diaphragm	tion vary fro area needed	om 0.02 MPa to to 100% open	0.1 MPa above the the control valve if a	
	A) 0.020 m ³	B) 0.016	m ³	C) 0.004 m ³	D) 0.005 m ³	
17.	A flow control valve with a linear plug gives a minimum flow rate of 0 and a maximum flow rate of 10 m ³ /s. It has a stem displacement at full travel of 20 mm and so the flow rate when the stem displacement is 5 mm is:					
	A) 0.0 m ³ /s	B) 2.5 n	n ³ /s	C) 5.0 m ³ /s	D) 7.5 m ³ /s	
18. A flow control valve with an equal percentage plug gives a fl stem displacement is 0 and 1.0 m ³ /s when it is at full travel. I travel is 30 mm. The flow rate with a stem displacement of 1.					m displacement at full	
	A) 0.32 m ³ /s	B) 0.45	m³/s	C) 1.41 m ³ /s	D) 3.16 m ³ /s	
19.	A closed-loop control a negative feedback lo system is:	17				
	A) $5 + 3/(s + 2)$	B) 5(s +	2)/3	C) 3/(s + 17)	D) 15/(s + 2)	
20.	An open-loop control 2/(0.5s+2) and a proce overall transfer function	ess, its shaft and	load, with a t			
	A) 2/[(0.5s + 20)(0.1s C) 2(0.ls + 0.5)/0.5s +			B) [2/(0,5s+2)] D) (0.5s+2)(0.	+ [1/(0.1s +0.5)] ls + 0.5)/2	
21.	The Laplace transform of the time function t e ^{-3t} is					
	A) 3/(s(s-3))	B) 3/(s(s	:+3))	C) 1/(s-3) ²	D) 1/(s+3) ²	
22.	The time function corresponding to the Laplace transform 5/(s + 3) is:					
	A) 5e ^{3t}	B) 5e ^{-3t}		C) 3e ⁵¹	D) 3e ^{-3t}	
23.	A system has a transfe output of the system v				impulse input, the	

C) 1/(s(s+3))

D) (s + 3)/1

B) s/(s+3)

A) 1/(s+3)

- The steady-state error for a step input with a proportional control system is, when steady-24. state conditions occur:
 - A) The magnitude of the final output
 - B) The error input to the controller
 - C) The initial size of the step input
 - E) The difference between the final output and the step input
- A proportional controller of gain K is used with a system with a transfer function 25. 4/(25+1) and a unity negative feedback loop. The closed-loop transfer function is:
 - A) 4K/(2s+I)
- B) 4K/(2s+5) C) K(25+1)/4
- D) 4K(2s-3)
- 0 Decide whether each of these statements is True (T) or False (F). 26.

Figure above shows a ladder diagram rung for which: (i) The input contacts are normally open. (ii) There is an output when there is an input to the contacts.

A) (i) T (ii) T B) (i) T (ii) F

C) (i) F (ii) T

- (ii) F D) (i) F
- Decide whether each of these statements is True (T) or False (F). 27.

Figure above shows a ladder diagram rung for which:

- The input contacts are normally open. (i)
- There is an output when there is an input to the contacts. (ii)
- (ii) T (ii) T A)

B) (i) T (ii) F

C) (i) F (ii) T

- (ii) F D) (i) F
- Decide whether each of these statements is True (T) or False (F). 28.

Figure above shows a ladder diagram rung for which:

- When only input 1 contacts are activated, there is an output. (i)
- When only input 2 contacts are activated, there is an output. (ii)
- A) (i) T (ii) T

B) (i) T (ii) F

(i) F (ii) T C)

(i) F (ii) F D)

29. Decide whether each of these statements is True (T) or False (F).

Figure A

When there is an input to Input 1 in Figure A, the output is switched:

- (i) On for the time for which the timer was pre-set.
- (ii) OffFfor the time for which the timer was pre-set.
- A) (i) T (ii) T
- B) (i) T (ii) F
- C) (i) F (ii) T
- D) (i) F (ii) F
- 30. Decide whether each of these statements is True (T) or False (F). When there is an input to Input 1 in Figure A:
 - (i) The timer starts.
 - (ii) There is an output from Output 1.
 - A) (i) T (ii) T
- B) (i) T (ii) F
- C) (i) F (ii) T
- D) (i) F (ii) F
- Decide whether each of these statements is True (T) or False (F). The timer in Figure A starts when: (i) There is an output, (ii) The input ceases.
 - A) (i) T (ii) T
- B) (i) T (ii) F
- C) (i) F(ii) T
- D)(i) F (ii) F
- Decide whether each of these statements is True (T) or False (F).

Figure. B

For the model in Figure B: (i) The resistive force which has to be overcome for the dashpot is proportional to the acceleration experienced by it. (ii) The resistive force which has to be overcome for the spring is proportional to its extension > /.

- A) (i) T (ii) T
- B) (i) T (ii) F
- C) (i) F(ii) T
- D) (i) F (ii) F
- 33. Decide whether each of these statements is True (T) or False (F). For the model in Figure B: (i) The equation for dynamic conditions relating the output y and the input F is a second-order differential equation. (ii) The steady-state gain of the system depends only on the constant of proportionality relating the force acting on the spring and its extension, i.e. the spring stiffness.
 - A) (i) T
- (ii) T
- B) (i) T (ii) F
- C) (i) F (ii) T
- D) (i) F (ii) F

34.	For a rotational system, t	he output 0 is related	to the input T by the d	ifferential equation:			
	$I\frac{\mathrm{d}^2\theta}{\mathrm{d}t^2} + c\frac{\mathrm{d}\theta}{\mathrm{d}t} + k\theta = T$						
	For the system to be criti	cally damped, we m	ust have:				
	A) $c = 1$	B) c = k	C) c = kI	D) $c = 2\sqrt{(kI)}$			
35.	For a system which can be represented by a second-order differential equation relating input and output, for a step input to give an output which rises to the steady-state va- ith no oscillations about the steady-state value and take the minimum amount of time, damping constant has to be:						
	A) = Zero	B) <1	C) = 1	D) > 1			
36.	An LVDT is impressed upon $6.3V$ input and it produces $5.2 V$ for a range of ± 0.25 inch. When the core is - 0.25 inch from the centre, what will be the output?						
	A) -2.0V	B) +2.0V	C) -2.6V	D)+2.6V			
37.	The root locus of the functions (i) $1/(s+1)^2$ (ii) $1/(s^2+4s+8)$						
	A) For (i) exponentional B) For (i) exponentional C) For (i) exponentional D) For (i) exponentional	decreasing, for (ii) o decreasing, for (ii) o	scillatory increasing scillatory decreasing				
38.	For type-2 system the steady state error due to step input is equal to						
	A) Infinity	B) Finite	C) zero	D) None of these			
39.	To obtain high accuracy	requirements, we use	×				
	A) Integral control C) Derivative control		B) Proportional D) None of thes				
40.	For a constant M circle the centre will lie at $[M^2/(1-M^2),0]$ in G-plane and has a radius of						
		M		M			
	A) M	B) $1 - M^2$	C) 1-M ²	D) $1+M^2$			
41,	Phase lag network						
	A) Maintains constant ve C) Increases system stab	and the second of	B) Decreases ba D) All of these	ndwidth			

The value of A matrix in $\dot{X} = AX$ for the system described by the differential equation 42. $\ddot{y} + 2\dot{y} + 3y = 0$ is

$$A$$
) $\begin{bmatrix} 1 & 0 \\ -2 & -1 \end{bmatrix}$

$$\begin{bmatrix} 1 & 0 \\ -1 & -2 \end{bmatrix}$$

$$C)$$
 $\begin{bmatrix} 0 & 1 \\ -2 & 1 \end{bmatrix}$

$$\begin{bmatrix} 1 & 0 \\ -1 & -2 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 \\ -2 & 1 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 \\ -3 & -2 \end{bmatrix}$$

43.		inear time invariant system initially at rest, when subjected to a unit step input, gives a ponse $y(t) = te^{-t}$, $t > 0$. The transfer function of the system is,						
	A) $\frac{1}{(s+1)^2}$	$B) \frac{1}{s(s+1)^2}$	C) $\frac{s}{(s+1)^2}$	D) $\frac{1}{s(s+1)}$				
44.	The unit step response of	The unit step response of a particular control system is given by $c(t) = 1 - 10e^{-t}$. Then its						
	transfer function is							
	A) $\frac{10}{s+1}$	B) $\frac{s-9}{s+1}$	C) $\frac{1-9s}{s+1}$	$D) \frac{1-9s}{s(s+1)}$				
45.	The characteristic equation	$n s^3 + 3s^2 + 3s + k =$	0 is stable for which	value of k?				
	A) -6	B) 15	C)5	D) 12				
46. None of the poles of a linear control system lies in the right half bounded input, the output of this system			nalf of s plane. For a					
	A) Is always bounded		B) Could be un	bounded				
	C) Always tends to zero		D) None of the	se				
47.	A unity feedback system has transfer function $G(s) = \frac{K}{s(s+1)(s+2)}$. In the root-locus,							
	the break away point occu	irs between						
	A) S=0 and -1		B) $s=-1$ and $-in$	ntinity				
	C) s=-1 and -2		D) s=2 and -ir	nfinity				
48.	A signal of 10mV is to be measured at 75MHz, which of the following instruments can be used?							
	A) VTVM		B) CRO					
	C) Moving iron volumeter		D) Digital mu	ltmeter				
49,	49. The characteristic equation of a closed loop system is given by $s^2 + 4s + 16$ resonant frequency in radians/sec of the system is							
	A) 2	B) $2\sqrt{3}$	C)4	D) $2\sqrt{2}$				
50.	The radial distance between	en a pole and origin	gives					
	A) Damped frequency of	oscillations	B) Damping ra	tio				
	C) Time constant		D) Natural free	quency of oscillation				
		Y-Y-Y						