Question Booklet Series: A

Question Booklet Serial No.: 310969

CET (UG) - 2021

Important: Please consult your Admit Card/Roll No. slip before filling your Roll Number on the Test Booklet and Answer Sheet.

Roll No.	(In Figure)	(In Words)	
		35)	â
O.M.R.	Answer Sheet Serial No.		
Signature of	Candidate:	Signature of Invigilator:	

SUBJECT: MATHEMATICS

Time: 70 Minutes Number of Questions: 60 Maximum Marks: 120 DO NOT OPEN THE SEAL ON THE BOOKLET UNTIL ASKED TO DO SO. INSTRUCTIONS:

- Write your Roll No. on the Questions Booklet and also on the OMR Answer Sheet in the space provided and nowhere else.
- Enter the Question Booklet Serial No. on the OMR Answer Sheet. Darken the corresponding bubbles with Black Ball Point/Black Gel Pen.
- 3. Do not make any identification mark on the Answer Sheet or Question Booklet.
- 4. The medium of examination shall be English only.
- 5. Please check that this Question Booklet contains 60 Questions. In case of any discrepancy, inform the Assistant Superintendent within 10 minutes of the start of Test.
- Each question has four alternative answer (A,B,C,D) of which only one is correct. For each question, darken only one bubble (A or B or C or D), whichever you think is the correct answer, on the Answer Sheet with Black Ball Point/Black Gel Pen.
- If you do not want to answer a question, leave all the bubbles corresponding to that question blank in the Answer Booklet. No marks will be deducted in such cases.
- 8. Darken the bubbles in the OMR Answer Sheet according to the Serial No. of the question given in the Question
- 9. Negative marking will be adopted for evaluation i.e. 1/4th of the marks of the question will be deducted for each wrong answer. A wrong answer means incorrect answer or wrong filling of bubble.
- 10. For calculations, use of simple log tables is permitted. Borrowing of log tables and any other material is not allowed.
- 11. For rough work only the blank sheet at the end of the Question Booklet be used.
- 12. The Answer Sheet is designed for computer evaluation. Therefore, if you do not follow the instructions given on the Answer Sheet, it may make evaluation by the computer difficult. Any resultant loss to the candidate on the above account, i.e. not following the instructions completely, shall be of the candidate only.
- 13. After the test, hand over the Question Booklet and the Answer Sheet to the Assistant Superintendent on duty.
- 14. In no case the Answer Sheet, the Question Booklet, or its part or any material copied/noted from this Booklet is to be taken out of the examination hall. Any candidate found doing so would be expelled from the examination.
- 15. 20 minutes extra should be given to the visually handicapped/Person with Disability (PwD) for each paper.
- 16. A candidate who creates disturbance of any kind or changes his/her seat or is found in possession of any paper possibly of any assistant or found giving or receiving assistant or found using any other unfair means during the examination will be expelled from the examination by the Centre Superintendent/Observer whose decision shall be final.
- 17. Tele-communication equipment such as Cellular phones, pager, wireless, scanner, camera or any electronic/digital gadget etc., is not permitted inside the examination hall. Use of calculators is not allowed.
- 18. The candidates will not be allowed to leave the Examination Hall/Room before the expiry of the allotted time.

l. I	et P	, Q and R	be three	e sets such	that P	Q = R and R	$P \cap Q =$	\emptyset . Then $P =$
(A)	Q	(B)	R-Q	(C)	Q-R	(D)	R
		roup of 800 can speak bo						glish. Find how
((A)	30	(B)	40	(C)	60	(D)	20
3.	If tan	$P = \frac{a}{a+1} $ and	$\tan Q = \frac{1}{2}$	$\frac{1}{2a+1}$ then find	the valu	e of $P+Q$.		
	(A)	45°	(B)	30°	(C)	60°	(D)	15 ⁰
4.	Find	the value of		$\frac{\sin 3x + \sin x}{x - \cos x}.$				
	(A)	$\sin 2x$	(B)	$\cos 3x$	(C)	tan x	(D)	cot x
5.	If $\left(\frac{1}{2}\right)$	$\left(\frac{+i}{i}\right)^m = 1$, the	e find the	east positive i	ntegral v	alue of m .		
	(A)	- 6/	(B)	2	(C)	4	(D)	1
	(A)	3	(B)	4	(C)	e equation 1 - 5	(D)	No such solution exist
7.		ow many wa ther?	ys can 5 g	girls and 3 bo	ys be se	ated in a row	so that	no two boys are
	(A)	14400	(B)	1200	(C)	1400	(D)	15000
8.		many nun 0,2,4,2,4?	nbers gre	ater than 10	00000	can be forme	ed by a	using the digits
	(A)	400	(B)	360	(C)	460	(D)	220
9.		I the number o digit is repe		even numbers	s that car	n be made usir	ng the di	gits 1,2,3,4,5,6,7,
	(A)	100		45	(C)	50	(D)	60
10	. Find	d the coefficie	ent of x^5 in	$(x+3)^9$.				
	(A)				(C)	${}^{9}C_{4}(3)^{4}$	(D)	${}^{9}C_{4}(3)^{5}$
11		ne coefficient I the value of		th and 7 th tern	ns in the	expansion of	$(1+x)^{r}$	are in A.P., then
	(A)		(B)	14 only	(C)	10 only	(D)	7, 14 both
13	2. Fin	d the sum of	the first n	terms of the se	eries 1 ×	$2 + 2 \times 3 + 3$	\times 4 + 4	4 × 5 + ···.
	(A)	m(m211)	(B)	$\frac{n(n+1)(n+2)}{3}$	(C)	$\frac{n(n+3)}{6}$	(D)	$\frac{n^2(n^2+1)}{4}$
1	3. Fin				hich tl	ne infinite	series	is convergent:
	(A)	r < 1		$ r \leq 1$	(C)	r > 1	(D)	For all values of

	(i)	$\{(2,1), (5,1)\}$	(a), (8,1), (1 (b), (6,3), (8,	ons are function 1,1), (14,1), (17,4), (10,5), (12,4)	(1,1)	7)}		
	(A)	(i), (iii) only	(B)	(ii, (iii)) only	(C)	(i) and (ii) onl	y (D)	(i), (ii), (iii)
15.	Find	the domain o	f the functi	$f(x) = \frac{1}{\sqrt{x+1}}$	<u>[x]</u> .			
		$(0,\infty)$		$(-\infty,\infty)$		[-1,1]	(D)	$(-\infty,0)$
16.	Find (A)	the measure 300		between the li	nes x+y		+1=0. (D)	90°
17.	Find (A)	the value of a	x for which (B)	the points (x,-1	1), (2,1) (C)		collinear (D)	r. 2
18.	The the ra	line perpendi atio 1:n, find	cular to the	e line segment	joining	the points (1,0) and (2	2,3) divides it in
		(n+1) x+3 (n+1) x-3n	(n+1)y-(n+			nx+3y-11=0 nx+3(n+1)y+	10=0	
19.	inter	the value o	f p so that	t the three line	es 3x+y	y-2=0, px+2y-3	3=0 and	1 2x-y-3=0 may
	(A)	3	(B)	2	(C)	5	(D)	4
20.	(A)	$x^2 + y^2 -$	2bx + 2ay	with centre (b,a $a^2 + b^2 = 0$ $a^2 + a^2 = 0$	(B)	$x^2 + v^2 - 2h$	0x - 2a	$y + b^2 = 0$ $+ a^2 = 0$
21.		the length of	the latus re	ectum of $3x^2$ -	+ 2 y ² =	= 18?		
	(A)	2 units	(B)	4 units	(C)	3 units	(D)	5 units
22.	Find (A)	the centroid (1,1,-2)	of a triangl (B)	e, mid points of (1,2,3)	f whose (C)	e sides are (1,2, (-1,1,1)		(0,1,2) and (-1,1, -1).
23.	. Eval	luate $\lim_{x\to 0}$	$\frac{\sin ax}{hx}$.					
	(A)((B)	b/a	(C)	ab	(D)	a/b
24.	Find (A)	the $\lim_{x\to 1} y$	f(x) where (B)	$ef(x) = x^2 - 3$	1, <i>if</i> x :	\leq 1,and $f(x) =$ 1	-x - (D)	1, if $x > 1$. Limit does not exist
25.	Thre	ee vertices of dinates of the	a parallelo fourth ver	ogram PQRS ar	e P(3,-	1,2), Q(1,2,-4)	and R (-1,1,2). Find the
	(A)	(1,2,3)	(B)	(2,4,-1)	(C)	(1,-2,8)	(D)	(3,5,-2)
26.	Find (A)	the mean de 2	viation abo (B)	out the mean for 3 (2)	the dat (C)	ta 4,7,8,9,10,12 5	,13,17. (D)	0

27.	The lo		a seque	nce of four dig	gits with	no repeats. V		i.e. from 0 to 9. ne probability of	
	(A)	1/5040	The state of the s	2/1500	(C)	1/5540	(D)	3/4501	
28		S are two ever $P(A \cap B')$.	nts such	that $P(R) = 0.5$	4, P(S)=	0.69 and P(R	∩ S)=0.3	35.	
	(A)		(B)	0.19	(C)	0.90	(D)	0.21	
29	relation	on R which of t	he follo				$R=\{(a,b)$	$a \leq b^2$. For	
	(i) (ii) (iii)	R is reflexive R is symmetr R is transitiv	ric e						
	(iv)	R is neither r	eflexive	nor symmetri	c nor tra	nsitive			
	(A) (C)	Statement (ii Statement (ii	1000		(B) (D)	Statement (w .	
30		the principal va $-\pi/3$			(C)	$\pi/6$	(D)	$\pi/4$	
3	1. Find	the value of $\pi/4$	$n^{-1}\left(\frac{x}{y}\right)$	$-\tan^{-1}(\frac{x-y}{x+y})$).				
	(A)	$\pi/4$	(B)	$\pi/3$	(C)	0	(D) π	/2	
3	2. Which	ch of the given	values of $\begin{bmatrix} 3x \\ y \end{bmatrix}$	of x and y make $+7$ 5 -1 2 $-3x$	e the fol $=\begin{bmatrix} 0 & y \\ 8 & \end{bmatrix}$	lowing pair of $\begin{bmatrix} -2 \\ 4 \end{bmatrix}$	f matrices	s are equal	5%
	(A)	x=1, y=3	(B)	x=-1, y=0	(C)	x=2, y=1	(D)	Not possible to find	
3	3. If <i>P</i> (A)	is a square mat $P + I$	rix such (B)	that $P^2 = P$, that $I - P$	then (I + (C)	$(-P)^3 - 7A$ is	equal to (D)	2 P	
3	4. The	matrix $P'QP$ in P is symmetr	s symm	etric provided			31		
		P is symmetr Q is symmetr				P is skew- Q is skew-			
3			inction a	and if $\lim_{x\to 0}$	f(x) ex	ists, then the	value of t	he f $\lim_{x\to 0} f(x)$	
	(A)	-1	(B)	0	(C)	1	(D)	Limit does not exist	t
2	36. Find	I the value of a	if the fu				at $x = 2$.		
	(A)	3	(B)	$f(x) = \begin{cases} 2 \\ 1 \end{cases}$	a, x + (C)	x = 2 $1, x > 2$ 2	(D)	No such value exist	ts
	186 A		# SE		(3)				

3'	7. Find	$\frac{dy}{dx}$ for the functi	on $y =$	$\sec^{-1}\left(\frac{x+1}{x-1}\right) +$	- sin ⁻¹	$\left(\frac{x-1}{x+1}\right)$.			
	(A)		(B)	1	(C)		(D)	$\cot^{-1} x$	
3	8. Find	$\frac{dy}{dx}$ if $x^y = y^x$.							
		$\frac{y[x\log x - 1]}{x[y\log x - 1]}$	(B)	$\frac{x \log y}{y \log x}$	(C)	$\frac{\log x - \log y}{x - y}$	(D)	$\frac{y[x\log y - y]}{x[y\log x - x]}$	
3	If th	an of height 180 e height of the							
	-	hening. 1.2 m/sec	(B)	0.8 m/sec	(C)	0.5 m/sec	(D)	2 m/sec	
4		the point on the se slope is 1/2.	e curve	$= x^2 - 4x +$	3, the	normal at whi	ich is pa	rallel to the l	ine
			(B)	(2,-1)	(C)	(1,0)	(D)	(-1, 8)	
4		w that the fur	nction	$f(x) = \tan^{-1}($	$\sin x +$	$\cos x$) is str	ictly in	creasing in	the
	inter (A)	$(0,\pi)$	(B)	$(-\pi,0)$	(C)	$(-\pi,\pi)$	(D)	$(0, \pi/4)$	
- 4		the percentage			a recta	ngle when an	error of	f 1% is made	e in
		suring its length 2%			(C)	1%	(D)	4%	
4	13. Eval	uate the integral	$\int \frac{x \sin}{\sqrt{1-x}} dx$	$\frac{-1}{x^2} dx.$					
	S	$\sin^{-1} x + x + $ $\sin^{-1} x + x$	С			$-\sqrt{1-x^2} \operatorname{s}$ $\sqrt{1-x^2} + \operatorname{s}$			
			π			VI - 2 + 3	SIII X	T C	
4		d the value of $\int -\pi/2$	$\cos 2$ (B)	$\frac{dx}{\pi}$ log (sin x)		$\pi/4$	(D)	$\pi/2$	
- 2	1	the area of the				500		€ 98.200	
		$4a^2$		$8a^2/5$			(D)	$5 a^2$	
	46. Fin	d the area bound					-axis.		
	(A)	23/3	(B)	46/3	(C)	12/5	(D)	13	
39		d the general sol		f the differentia		un		У.	
	8. 7	$e^y + e^x = x$ $e^{x+y} = x^3 + $				$e^{y}e^{x} = x^{2}$ $e^{y} = e^{x} + 1$			
	(C)	$e^{-x} = x^2 +$	x + C		(D)	e' = e'' +	3 + 6		
		d the general sol		f the differentia		6676		¥	
	(A)	y = 2x + xe $y = (2x - 1)$		-2 <i>x</i>	(B)	$x = y + e^{-}$		2 <i>x</i>	
	11	77 - 1 /2 - 1	1 - 00		(111)	11 - 12	- CO		

49. Determine the order and degree (if defined) of the differential equation

$$\left(\frac{dy}{dx}\right)^4 + 3y\frac{d^2y}{dx^2} = 0.$$

Order=2, degree=1

Order= 1, degree=4

Order=1, degree=1 (C)

- Order=2, degree=4 (D)
- **50.** Find a vector in the direction of vector $5 \hat{i} \hat{j} + 2 \hat{k}$ which has magnitude 8 units.

(A) $\frac{5 \,\hat{\imath} - \hat{\jmath} + 2 \,\hat{k}}{8}$ (C) $\frac{40}{\sqrt{30}} \,\hat{\imath} + \frac{8}{\sqrt{30}} \,\hat{\jmath} + \frac{16}{\sqrt{30}} \,\hat{k}$

- (B) $\frac{-5\,\hat{\imath}+\hat{\jmath}-2\,\hat{k}}{8}$ (D) $\frac{40}{\sqrt{30}}\,\hat{\imath}-\frac{8}{\sqrt{30}}\,\hat{\jmath}+\frac{16}{\sqrt{30}}\,\hat{k}$
- 51. If \vec{a} and \vec{b} are two collinear vectors, then which of the following are incorrect?
 - $\vec{b} = \lambda \vec{a}$, for some scalar λ
 - $\vec{b} = \pm \vec{a}$ (ii)
 - The respective components of \vec{a} and \vec{b} are proportional.
 - Both the vectors \vec{a} and \vec{b} have same direction but different magnitudes. (iv)
 - Statement (i) is incorrect (A)
- Statement (iv) is incorrect (B)
- Statement (i) and (ii) are incorrect (C)
- Statement (iii) is incorrect (D)
- **52.** Find the direction cosines of the vector $\hat{\imath} + 2\hat{\jmath} + 3\hat{k}$.

(A) $\left(\frac{1}{10}, \frac{2}{10}, \frac{\sqrt{5}}{10}\right)$ (C) $\left(\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right)$

- (B) $\left(\frac{-1}{10}, \frac{2}{10}, \frac{-\sqrt{5}}{10}\right)$ (D) $\left(\frac{-1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}\right)$
- 53. Find the angle between two vectors \vec{a} and \vec{b} with magnitude $\sqrt{3}$ and 2 respectively with $\vec{a} \cdot \vec{b} = \sqrt{6}$.
 - $(A)\pi/2$
- $\pi/5$ (B)
- $\pi/6$ (C)
- (D) $\pi/4$
- 54. Find the projection of the vector $\hat{i} \hat{j}$ on the vector $\hat{i} + \hat{j}$.
 - (A)

- 0.5 (D)
- 55. Find the Cartesian equation of the line which passes through the point (-2,4,-5) and parallel to the vector vector $3 \hat{i} + 5 \hat{j} + 6 \hat{k}$.
 - (A) $\frac{x+2}{3} = \frac{y-4}{5} = \frac{z+5}{6} = k$ (C) x + y + z = -3
- (B) $\frac{x-2}{3} = \frac{y+4}{5} = \frac{z-5}{6} = k$ (D) None of the above

56. Find the value of p so that the line	$es \frac{1-x}{3} =$	$=\frac{7y-14}{2p}$	$=\frac{z-3}{2}$	and $\frac{7-7x}{3p}$	$=\frac{y-5}{1}:$	$=\frac{6-z}{5}$ are	e at righ
angles.							

- (A) 12/17
- (B) 11/70
- (C) 70/11
- (D) 25/11

57. If P and Q are square matrices of order 3, such that
$$|P|=-1$$
, $|Q|=3$, then $|3PQ|$ is equal to

- (A) 81
- (B) -81
- (C) -9
- (D) -27

58. If
$$P^T$$
 is the transpose of a square matrix P . Then

(A) $|P| \neq |P^T|$

- (B) $|P| + |P^T| = 0$
- (C) $|P| = |P^T|$ only if P is symmetric
- $(D) |P| = |P^T|$

59. If P and Q are skew –symmetric matrices of order n
$$(P \neq Q)$$
, then

- (A) P + Q is skew-symmetric
- (B) P + Q is symmetric
- (C) P + Q is a diagonal matrix
- (D) P + Q is a zero matrix

60. The area of the parallelogram of which
$$\hat{i}$$
 and $\hat{i} + \hat{j}$ are adjacent sides is

(A) 1

- (B) 2
- (C) ½
- (D) $\sqrt{2}$

x-x-x